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Preface

RapidMiner is one of the world’s most widespread and most used open source

data mining solutions. The project was born at the University of Dortmund in

2001 and has been developed further by Rapid-I GmbH since 2007. With this

academic background, RapidMiner continues to not only address business clients,

but also universities and researchers from the most diverse disciplines.

This includes computer scientists, statisticians and mathematicians on the one

hand, who are interested in the techniques of data mining, machine learning and

statistical methods. RapidMiner makes it possible and easy to implement new

analysis methods and approaches and compare them with others.

On the other hand, RapidMiner is used in many application disciplines such

as physics, mechanical engineering, medicine, chemistry, linguistics and social

sciences. Many branches of science are data-driven today and require flexible

analysis tools. RapidMiner can be used as such a tool, since it provides a wide

range of methods from simple statistical evaluations such as correlation analy-

sis to regression, classification and clustering procedures as well as dimension

reduction and parameter optimisation. These methods can be used for various

application domains such as text, image, audio and time series analysis. All these

analyses can be fully automated and their results visualised in various ways.

In this paper we will show how RapidMiner can be optimally used for these tasks.

In doing so, we will not assume the reader has any knowledge of RapidMiner or

data mining. But nor is this a text book that teaches you how to use RapidMiner.

Instead, you will learn which fundamental uses are possible for RapidMiner in
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research. We recommend the RapidMiner user manual [3, 5] as further reading,

which is also suitable for getting started with data mining as well as the white

paper “How to Extend RapidMiner” [6] if you would like to implement your own

procedures in RapidMiner.

Moreover, the Rapid-I team welcomes any contact and will gladly help with the

implementation of projects in the academic environment. Rapid-I takes part

in research projects and hosts the annual RapidMiner user conference RCOMM

(RapidMiner Community Meeting and Conference). So if you obtain results with

RapidMiner or RapidAnalytics which you would like to present to an interested

audience, why not consider submitting a paper?
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1 Preface

We are not assuming at this stage that the reader is already familiar with Rapid-

Miner or has already used it. This first part will therefore take a detailed look

at the program, its functions and the way these can be used. We also describe

briefly which possibilities there are of getting in contact with the Community in

order to get assistance or make your own contribution. Finally, we will mention

some of the most important terms from the area of data mining, which will be

assumed as understood in later chapters.

1.1 The program

RapidMiner is licensed under the GNU Affero General Public License version 3

and is currently available in version 5.2. It was originally developed starting in

2001 at the chair for artificial intelligence of the University of Dortmund under

the name of
”
Yale“. Since 2007, the program has been kept going by Rapid-I

GmbH, which was founded by former chair members, and it has improved by

leaps and bounds since then. The introduction of RapidAnalytics in 2010 means

there is now a corresponding server version available, which makes collaboration

and the efficient use of computer resources possible.

RapidMiner has a comfortable user interface, where analyses are configured in a

process view. RapidMiner uses a modular concept for this, where each step of an

analysis (e.g. a preprocessing step or a learning procedure) is illustrated by an

operator in the analysis process. These operators have input and output ports
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1. Preface

Figure 1.1: A simple process with examples of operators for loading, preprocess-

ing and model production

via which they can communicate with the other operators in order to receive

input data or pass the changed data and generated models over to the operators

that follow. Thus a data flow is created through the entire analysis process, as

can be seen by way of example in fig. 1.1. Alongside data tables and models,

there are numerous application-specific objects which can flow through the pro-

cess. In the text analysis, whole documents are passed on, time series can be

led through special transformation operators or preprocessing models are simply

passed on to a storage operator (like a normalisation) in order to reproduce the

same transformation on other data later on.

The most complex analysis situations and needs can be handled by so-called

super-operators, which in turn can contain a complete subprocess. A well-known

example is the cross-validation, which contains two subprocesses. A subprocess

is responsible for producing a model from the respective training data while the

second subprocess is given this model and any other generated results in order to

apply these to the test data and measure the quality of the model in each case.

A typical application can be seen in fig. 1.2, where a decision tree is generated

on the training data, an operator applies the model in the test subprocess and a

further operator determines the quality based on the forecast and the true class.

Repositories enable the user to save analysis processes, data and results in a

project-specific manner and at the same time always have them in view (see

2



1.1. The program

Figure 1.2: The internal subprocesses of a cross-validation

fig. 1.3). Thus a process that has already been created can be quickly reused

for a similar problem, a model generated once can be loaded and applied or

the obtained analysis results can simply be glanced at so as to find the method

that promises the most success. The results can be dragged and dropped onto

processes, where they are loaded again by special operators and provided to the

process.

In addition to the local repositories, which are stored in the file system of the

computer, RapidAnalytics instances can also be used as a repository. Since the

RapidAnalytics server has an extensive user rights management, processes and

results can be shared or access for persons or groups of persons limited.

The repositories provided by RapidAnalytics make a further function available,

which makes executing analyses much easier. The user can not only save the

processes there, but also have them executed by the RapidAnalytics instance

with the usual comfort. This means the analysis is completely implemented in

the background and the user can find out about the analysis process via a sta-

tus display. The user can continue working at the same time in the foreground,

without his computer being slowed down by CPU and memory-intensive compu-

tations. All computations now take place on the server in the background, which

is possibly much more efficient, as can be seen in fig. 1.4. This also means the

hardware resources can be used more efficiently, since only a potent server used

jointly by all analysts is needed to perform memory-intensive computations.
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1. Preface

Figure 1.3: A well-filled repository

Figure 1.4: A process which was started several times on a RapidAnalytics in-

stance. Some cycles are already complete and have produced results.

4



1.2. The environment

Figure 1.5: The R perspective in RapidMiner

Alongside the core components of RapidMiner, there are numerous extensions

which upgrade further functions, such as the processing of texts, time series or a

connection to statistics package R [1] or Weka [2]. All these extensions make use

of the extensive possibilities offered by RapidMiner and supplement these: They

do not just supplement operators and new data objects, but also provide new

views that can be freely integrated into the user interface, or even supplement

entire perspectives in which they can bundle their views like the R extension in

fig. 1.5.

1.2 The environment

RapidMiner and RapidAnalytics do of course not stand alone. No software

can exist without its developers and no open source project will be successful

without a live and kicking community. The most important point of contact

for community members and those wishing to become members is the forum

at http://forum.rapid-i.com, which is provided and moderated by Rapid-I.
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1. Preface

Beginners, advanced users and developers wishing to integrate RapidMiner into

their own open source projects or make their own extensions available will all get

answers to their questions here. Everyone is warmly invited to participate in this

international exchange.

For all those wishing to get involved in a particular subject area, make their

own code available, or publish their own extensions, it is worthwhile becoming

a member of one of the Special Interest groups, which each concentrate on a

topic such as text analysis, information extraction or time series analysis. Since

Rapid-I developers also participate in this exchange, topics discussed here have

a direct influence in further development planning. Whoever would like to make

his own extension accessible to a larger public can use the necessary platform for

this - the Marketplace (see section 3.1). Here, users can offer their extensions and

choose from the extensions offered by other users. RapidMiner will, if desired,

automatically install the selected extensions at the time of the next start.

As a supplement to this, Rapid-I naturally offers professional services in the

RapidMiner and RapidAnalytics environment. As well as support for RapidMiner

and RapidAnalytics, training courses, consultation and individual development

relating to the topic of data analysis are offered.

1.3 Terminology

Before we begin with the technical part, it would be helpful to clarify some terms

first. RapidMiner uses terminology from the area of machine learning. A typical

goal of the latter is, based on a series of observations for which a certain target

value is known, to make forecasts for observations where this target value is not

known. We refer to each observation as an example. Each example has several

attributes, usually numerical values or categorical values such as age or sex. One

of these attributes is the target value which our analysis relates to. This attribute

is often called a label. All examples together form an example set. If you write

all examples with their attributes one below the other, you will get nothing other

than a table. We could therefore say
”
table“ instead of

”
example set“,

”
row“

instead of
”
example“ and

”
column“ instead of

”
attribute”“. It is helpful however
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1.3. Terminology

to know the terms specified above in order to understand the operator names

used in RapidMiner.
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2 The use cases

Having read the first section, you may already have one or two ideas why using

RapidMiner could be worthwhile for you. The possibilities offered by RapidMiner

in different use cases shall now be gone into in more detail. Two possible appli-

cations in the academic environment shall be presented at this stage: The first

relates in particular to researchers wishing to evaluate data mining procedures.

In section 2.1 we will show how this can be done in RapidMiner with existing

algorithms. After that we will show in section 2.2 how self-developed algorithms

can be integrated into RapidMiner and thus be used as part of this analysis.

Of course, data mining does not just serve as a purpose in itself, but can also be

applied. In section 2.3 we will show how data from application disciplines can be

analysed with RapidMiner.

All processes mentioned here are located in an example repository, which is avail-

able for download at http://rapid-i.com/downloads/documentation/academia/

repository_en.zip. In order to use it, the ZIP file must be extracted and the

directory created thereby must be added to RapidMiner as a local repository. To

do this, click on the first button in the toolbar of the Repositories view and select

”
new local repository“. Then indicate the name of the directory. You will now

find all example processes in the repository tree, which is shown in this view.

When reading this chapter it is recommended to open the processes contained

in this repository in RapidMiner so as to understand how they work. Rapid-

Miner can be downloaded at http://www.rapidminer.com. The RapidMiner

user manual [3] is also recommended for getting started.
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2. The use cases

2.1 Evaluation of learning procedures

A typical and recurring task in the area of machine learning is comparing two or

more learning procedures with one another. This can be done to investigate the

improvements that can be obtained by new procedures, and also simply be used

to select a suitable procedure for a use case. In this section we will show how

this can be done with RapidMiner.

2.1.1 Performance evaluation and cross-validation

The numerous operators that apply machine learning procedures to datasets can

be easily used in combination with other operators. Typical examples of opera-

tors used in the evaluation of learning procedures are cross-validation, operators

for computing standard quality measures, parameter optimisations and last but

not least logging operators for creating procedure performance profiles. Since

RapidMiner supports loops, processes can also be created that apply the new

procedure to several datasets and compare it with other procedures. A process

that enables such a validation of one’s own procedure can be found in the example

repository.

If you look at the process 00.1 - Loop Datasets, you will see that it primarily

consists of three blocks: In the first block, some operators load a selection of

datasets, which are then combined with the Collect operator to form a Collection.

Of course, any of your own datasets can be loaded here.

In the second block, the datasets are iterated over: For this purpose, the internal

process is executed by the Loop Collection operator for each individual dataset

of the Collection. The dataset is copied directly in the subprocess of the loop

and led to three cross-validations. In each cross-validation there is a different

learning procedure. In this way the performance of all three learning procedures

is compared.

Within the loop, a Log operator records the respective results of the procedures.

In the third block, this log is converted into a dataset where all results are sum-
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2.1. Evaluation of learning procedures

marized. It can now be saved, exported and viewed like every other dataset.

The second process 00.2 - Loop Files works in a very similar way. Instead of

loading the datasets from the repository individually, they are automatically

loaded from a collection of CSV files here. If there are several datasets available,

they can be easily and automatically used for testing in this way. The rest of the

process can remain unchanged here. Of course, other tasks can also be completed

in this way, such as transferring datasets into the repository.

2.1.2 Preprocessing

In many cases, procedures need preprocessing steps first in order to be able to

deal with the data in the first place. If we want to use the operator k-NN for the

k-nearest-neighbour method, we must note for example that scale differences in

the individual attributes can render one attribute more important than all others

and make the neighbourhood relation dominate in the Euclidean space. We must

therefore normalise the data in this case by adding a Normalize operator first.

However, if we add the Normalize operator before the cross-validation, all data will

be used to determine the average value and the standard deviation. This means

however that knowledge about the test part is already implicitly contained in

the training part of the normalised dataset within the cross-validation. Possible

outliers, which are only present in the test part of the dataset, have already

affected the scaling, which is why the attributes are weighted differently. This is

a frequent error which leads to statistically invalid quality estimations.

In order to prevent this, we must drag all preprocessing steps into the cross-

validation and execute them in the training subprocess. If we do not execute

any further adjustment in the process, the model generated in the training pro-

cess will of course be confronted with the not yet normalised data in the test

process. This is why all preprocessing operators, the results of which depend

on the processed data, offer so-called preprocessing models. These can be used

to execute an identical transformation again. Thus the same average values and

standard deviations are used to transform at the time of normalisation, instead

of recomputing these on the current data.

11



2. The use cases

In order for these models to be used they just need to be transferred from the

training process to the test subprocess of the cross-validation. They can be

applied there with a usual Apply Model operator (like in the process 00.3 - Include

Preprocessing in Validation) before the actual model is applied.

2.1.3 Parameter optimisation

It is therefore very easy on the whole to perform a real validation of a procedure

in RapidMiner. However, almost every procedure has certain parameters with

which the quality of the models can be influenced. The results will be better or

worse depending on the setting. So if it is to be shown that a new procedure is

superior to an existing one, you cannot just optimise the parameters of your own

procedure or even set the parameters arbitrarily. The performance of procedures

such as the support vector machine or a neural network in particular depends

greatly on the parameter settings.

Therefore RapidMiner offers the possibility of looking for the best parameter

settings automatically. To do this, you use one of the Optimize Parameters oper-

ators. The operator Optimize Parameters (Grid) can be controlled most simply.

It iterates over a number (previously defined by the user) of combinations of the

parameters to be optimised. For each parameter combination it executes its in-

ternal subprocess. Accordingly, only parameters of operators of this subprocess

can be optimised. The subprocess must return a performance vector here (e.g.

the Accuracy), using which Optimize Parameters can recognise the quality of the

current combination. After it has tested all parameter combinations, the Opti-

mize Parameters operator returns the combinations with maximum performance

measured in their cycle.

If not only the result as to the best combination is of interest, but also the general

progression for example, then it is worth using a Log operator. If the latter is

executed, it writes a new row into its log, which contains all values indicated by

the user. These values can either be the current values of any parameters of any

operators in the process or special values that vary from operator to operator.

All operators indicate for example the frequency with which they have already
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2.1. Evaluation of learning procedures

been executed, the execution time and the like. Moreover, some operators give

additional information. For example, the cross-validation supplies the quality and

its standard deviation obtained at the time of the last execution. An example

which performs such an optimisation and logs all combinations in doing so can

be found in the process 00.4 - Optimize Parameters.

A further application for the Log operator can be found in the process 00.5 -

Create Learning Curve. This investigates how a learning procedure behaves in the

case of different training dataset sizes. For this purpose, a random sample of a

certain size of the entire dataset is made with a Sample operator. The quality of

the procedure can now be determined on this sample using the cross-validation.

Since this means that the quality depends greatly on the drawn sample, we have

to perform this several times in order to compensate for coincidental deviations

in a random sample. The smaller the original dataset, the more repetitions are

necessary. The Loop operator can be used to execute part of a process several

times. With the parameter iterations, it offers the possibility of indicating how

frequently its subprocess is to be executed.

This entire procedure must of course be performed for all different sample sizes.

We use the Loop Parameters operator for this, which helps us to configure the

parameter combinations with which its subprocess is to be executed. In this

case, we gradually vary the sample ratio parameter of the Sample operator in the

subprocess between and one hundred percent. We therefore get a very fine curve.

If the investigation takes too long, the number of steps can be reduced meaning

the subprocess does not need to be executed as frequently.

Within the subprocess of the Loop operator, we now just need to measure the

current sample ratio in each case and the accuracy obtained. Since we get several

results for each sample ratio however, we still need to introduce a postprocessing

step in order to determine the average and the standard deviation of the quality

over the different samples. For this purpose, the log is transformed into an exam-

ple set in this process with the operator Log to Data, meaning we can aggregate

via the sample sizes and determine the average and the standard deviation. Thus

a dataset results from which we can read the quality as a function of the size of

the training dataset. In order to visualise the latter for a publication, we can use
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2. The use cases

Figure 2.1: A diagram visualising the quality of the results

the Advanced Charts view. A possible result could then be as shown in fig. 2.1.

If we do not only wish to examine the binary decision of a model, but also how

the confidences are distributed, it is worth taking a look at the ROC plot, which

visually represents the so-called Receiver Operator Characteristic. The rule here

is that curves running further up on the left are better than curves further down.

The perfect classifier would produce a curve that runs vertically upwards from

the origin up to the 1 and horizontally to the right from there.

In RapidMiner, such a curve can be produced very simply and can also be com-

pared very easily with other procedures. The test dataset just needs to be loaded

and placed at the input port of a Compare ROCs operator. All learning procedures

to be tested can subsequently be inserted into the subprocess. The results of the

procedures are represented together in a plot, as shown in fig. 2.2. The semi-

transparent areas indicate the standard deviation that results over the different
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2.1. Evaluation of learning procedures

Figure 2.2: An ROC chart for comparing three models

cycles of the internally used cross-validation. An example of the comparison of

Naive Bayes, Decision Tree and a Rule Set can be found in the process 00.6 -

Comparing ROCs.

Last but not least, it should be noted that all plots and results can depend

on coincidental fluctuations. You should therefore not rely on a comparison of

the control criteria alone, but also test whether differences are significant. In

RapidMiner, the results of several cross-validations can be easily placed for this

purpose on a T-Test or Anova operator. You then get a table indicating the

respective test results. The level of significance can be indicated as a parameter

in doing so. A process that performs these tests on several datasets by way of

example can be found in 00.7 - Significance Test.
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2. The use cases

2.2 Implementation of new algorithms

We have now seen how algorithms can be compared. However, in order to eval-

uate new (i.e. self-developed) algorithms in this way, these must of course be

integrated into RapidMiner. RapidMiner was originally developed exactly for

this application: New algorithms were to be comfortably, quickly and easily com-

parable with other algorithms.

Implementing new learning procedures in RapidMiner is very easy. It is merely

necessary to create two Java classes, of which one performs the learning on the

training dataset, i.e. the estimating of the model parameters. The other class

must save these parameters and be able to apply the model to new data i.e. make

predictions. This will be introduced briefly in the following based on a fictitious

learning procedure.

This section is not intended as a complete introduction to programming with

RapidMiner. It just touches briefly on some principles and show how easily new

operators can be integrated into the framework, so that you can apply the eval-

uation procedures described in the preceding section to your own algorithms. A

complete documentation for developers of RapidMiner extensions can be found in

the white paper
”
How to extend RapidMiner“ [6] and in the API documentation

[4]. If you are not a developer but want to discover RapidMiner from a user point

of view, you can feel free to skip this section.

2.2.1 The operator

In order to use a learning procedure in RapidMiner, it must be provided by an

operator like every other analysis step. To do this, we just need to create a

new subclass of Operator. For many kinds of operators there are specialised

subclasses which already provide various functions. In our case this is the class

AbstractLearner, from which all monitored learning procedures inherit. An

example implementation of such a procedure can be seen in fig. 2.3.

Essentially, only one method must be implemented which performs the training
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2.2. Implementation of new algorithms

1 public class MyLearner extends AbstractLearner {
2

3 public stat ic void St r ing PARAMETERALPHA = ”alpha” ;

4

5 /** Constructor called via reflection. */

6 public MyLearner ( OperatorDescr ipt ion d e s c r i p t i o n ) {
7 super ( d e s c r i p t i o n ) ;

8 }
9

10 /** Main method generating the prediction model. */

11 @Override

12 public Model l e a rn ( ExampleSet data ) throws OperatorException {
13 // Obtain user -specified parameter

14 int alpha = getParameterAsInt (PARAMETERALPHA) ;

15 MyPredictionModel model ;

16 // use data to create prediction model here

17 return model ;

18 }
19

20 /** Define user -configurable parameters here. */

21 @Override

22 public List<ParameterType> getParameterTypes ( ) {
23 List<ParameterType> parameterTypes = super . getParameterTypes ( ) ;

24 parameterTypes . add (new ParameterTypeInt ( ” alpha ” ,

25 ”The parameter alpha ” , 0 , 100 , 10) ) ;

26 return parameterTypes ;

27 }
28

29 /** Tell the user what kind of input the algorithm supports. */

30 @Override

31 public boolean suppor t sCapab i l i ty ( OperatorCapabi l i ty c a p ab i l i t y ) {
32 switch ( c a p ab i l i t y ) {
33 case NUMERICAL ATTRIBUTES:

34 case BINOMINAL LABEL:

35 return true ;

36 }
37 return fa l se ;

38 }
39 }

Figure 2.3: Example implementation of a learning procedure in RapidMiner
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2. The use cases

and then returns a model with the estimated model parameters, learn(). As an

input, it receives a data table in the form of an ExampleSet.

A learning procedure will usually offer different options to the user in order to

configure its behaviour. In the case of a k-nearest-neighbour method, the num-

ber of neighbours k would be such an option. These are called parameters in

RapidMiner and should not be confused with the model parameters (e.g. the

coefficient matrix of a linear regression). Each operator can specify these param-

eters by overwriting the method getParameterTypes(). In doing so, the range

of values (number from a certain interval, character string, selection from a set

of possible values, etc.) can be specified. The RapidMiner user interface then

automatically makes suitable input fields available for the configuration of the

operator. The parameter values selected by the user can then be queried and

used in the method learn() for example. In our example, the operator defines

a parameter with the name alpha.

The RapidMiner API offers numerous ways of supporting the user in the process

design, e.g. through early and helpful error messages. You can for example spec-

ify, by overwriting the method supportsCapability(),which data the learning

procedure can deal with. If there is unsuitable data, an appropriate error mes-

sage will be supplied automatically and relevant suggestions made for solving this.

This can take place as early as at the time of process design and does not require

the process to be performed on a trial basis. In our example, the algorithm can

only deal with a two-class problem and numerical influencing variables.

2.2.2 The model

You now just need to implement the model which saves the estimated model

parameters and uses these to enable forecasts to be made with the model. In

the class hierarchy, the new class must be arranged below Model. For a forecast

model, it is worthwhile extending either PredictionModel or SimplePredictionModel

which make a simplified interface available. Such a class is outlined in fig. 2.4.

Essentially, the method learn() must be implemented, by iterating over the

ExampleSet and generating a forecast attribute by means of the estimated model

18



2.2. Implementation of new algorithms

1 public class MyPredictionModel extends Predict ionModel {
2

3 private int alpha ;

4 private double [ ] est imatedModelParameters ;

5

6 protected MyFancyPredictionModel ( ExampleSet trainingExampleSet ,

7 int alpha ,

8 double [ ] est imatedModelParameters ) {
9 super ( tra in ingExampleSet ) ;

10 this . a lpha = alpha ;

11 this . est imatedModelParameters = estimatedModelParameters ;

12 }
13

14 @Override

15 public ExampleSet per fo rmPred ic t ion ( ExampleSet exampleSet ,

Att r ibute pred i c t edLabe l ) throws OperatorException {
16 // iterate over examples and perform prediction

17 return exampleSet ;

18 }
19 }

Figure 2.4: An example implementation of a forecast model

parameters. In our learn() method we could instantiate and return such a

model.

Exceeding the application for the purpose of a forecast, many models offer the

possibility of gaining an insight that can be interpreted by the user. For this

purpose, the model should be visualised in an appropriate way, which can be done

via a renderer. Details on this can be found in the API documentation [4] of

the class RendererService and in the white paper
”
How to extend RapidMiner“

[6].

2.2.3 The integration into RapidMiner

In order to make the operator available in RapidMiner, the classes must be in-

corporated into an extension. For this purpose, the implemented operators are
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listed in an XML configuration file, meaning they can be mounted by Rapid-

Miner in the right place within the operator tree. There is a template project

for this purpose, which can be imported into Eclipse for example and contains

an appropriate Ant script for building the extension. It also provides numerous

possibilities for comfortably creating documentation and other elements. You

simply copy the produced Jar file into the plugins directory of RapidMiner, and

then your extension is available. This too is detailed in the white paper
”
How to

extend RapidMiner“ [6].

2.3 RapidMiner for descriptive analysis

Although the main application of RapidMiner lies in the area of inferential statis-

tics, the numerous preprocessing possibilities can also be very useful in descriptive

statistics. The approach of the process metaphor offers quite different possibilities

for working on more complex data structures than is the case with conventional

statistics solutions. If regularly collected data is concerned for example, then the

processing can be automated as far as possible without any analysis efforts.

If you are not put off from drawing up scripts, the R extension of RapidMiner

provides access to all statistical functions offered by the world’s most widely used

statistics tool. These can also be integrated directly into the process in order to

fully automate the complete processing.

In the following we will look at a dataset containing information from a ques-

tionnaire. The questions were asked at various schools of different types as well

as at a university. We can use information concerning the sex and age of those

asked, otherwise the data remains anonymous. All information was entered into

an Excel table and we have already saved this data as 01 - Questionare Results

in the repository via the File menu and the item Import Data. Each question

of the questionnaire had a different number of possible answers, whereby only

one answer could be marked in each case. In order to save time during manual

inputting, the answers were consecutively numbered and only the number of the

marked answer was indicated in the table. A 0 designates a wrong or missing

answer. Fig. 2.5 shows an excerpt from the table.
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Figure 2.5: An excerpt of the example data
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2.3.1 Data transformations

In a first analysis, we just want to obtain a rough overview of the general response

behaviour to start with. We would like to look at all groups together first all,

i.e. without any classification by sex or age. Our goal is to produce a table in

which each row represents a question and each column an answer. The relative

frequencies of the answers to the respective questions are to be indicated in the

cells of the tables.

Since we do not want to group at first, we remove all columns apart from those

containing the answers. To do this, we use the operator Select Attributes, as

demonstrated in the process 01.1.1 - Count Answers.

During importing we defined the columns as a numerical data type. Although

numbers are concerned, these do not represent a numerical value in the sense

that intervals can be determined or general arithmetic operations carried out

with them. We therefore want to transform the data type of the column into

a categorical type first. Attributes that can have different categorical types are

called polynominal in RapidMiner. Therefore the Numerical to Polynominal is

used.

In order to obtain a column specific to each answer, we can now transfer the

polynominal column into a so-called Dummy Encoding. This standard technology,

which is frequently used when wishing to represent nominal values numerically,

introduces, for each nominal value, a new column which can take the value zero

or one. A one indicates that the original column contained the nominal value

represented by the new column. Accordingly, there is always exactly a one in

each row within the columns created in this way, as can be easily seen from the

result of the transformation in fig. 2.6.

If we are interested in the average answer frequencies, we must now calculate the

average over all questionnaires submitted, for which it is sufficient to apply the

Aggregate operator with the preset aggregation function average. Since we want

to calculate the average over all rows, we do not select an attribute for grouping.

Thus all rows now fall into one group. We get a table as a result with one row per

group, so in this case with just one row indicating the relative answer frequency.
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(a) Before the

transformation

(b) (B) After the transformation

Figure 2.6: Dummy coding of the response behaviour

The process is interrupted here by breakpoints, so that important intermediate

results such as the original dataset and the dummy-coded data can be looked

at. You can resume the execution of the process by pressing the Execute button

(which is now green) in the main toolbar.

This result cannot yet be used, neither for the human eye, nor for printing in a

paper. You could of course copy all these values into an Excel table now and

arrange them manually in a meaningful way, but since we still want to calculate

these very numbers for subgroups, it would be better at this stage to find an

automated variant directly, since it will save us much work later on.

For this purpose, we want to first remove the redundant average from the column

names. To do this, we use the operator Rename by Replacing, as shown in the

01.1.2 - Count Answers. We simply add the changes to our process here. This

operator uses so-called regular expressions for renaming attributes. These are a

tool that is also frequently used elsewhere. Since many good introductions to

this topic can be easily found on the internet, we will not go into detail here.

For your experiments you can use the assistant, which you can get to by pressing

the button next to the input field for the regular expression. You can apply an

expression to a test character string here and immediately get feedback as to

whether the expression fits and on which part. In our example, we replace the

attribute name with the content of the round brackets in the attribute name using
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a so-called Capturing Group. Average (Question1) therefore becomes Question1.

In the next step, we come to the Transpose operator, which transposes the data

table. All columns become rows, whilst each row becomes a column. Since the

dataset only had one row after the aggregation, we now get exactly one regular

column, whilst the newly created id column contains the name of the attributes

from which the row was formed.

Based on the id attribute we can now see which answer to which question spawns

the calculated frequency value in the regular attribute att 1. The values in the id

column have the form
”
question X = Y“, whereby X designates the number of

the question and Y designates the number of the answer. We want to structure

this information more clearly by saving it in two additional new attributes. For

this purpose we will simply copy the id attribute twice and then change the values

with a Replace operator in such a way that they clearly identify the question on

the one hand and the answer on the other. The Replace operator in turn uses

regular expressions. We will also use the Capturing Group mechanism here to

specify which value is to be applied. The result after these two operators looks

much more readable already, although it is still unsuitable for printing. A wide

format where each question occupies one row and the answers are arranged in

the columns would be much more practical and compact.

We will now launch into the last major step in order to transform the data

accordingly. For this purpose, we attach a Pivot operator to our current process

chain, as in the process 01.1.3 - Count Answers. This operator will ensure that

all rows which have the same value in the attribute designated by the parameter

group attribute are combined to make a single row. Since we want to describe

each question with a row, we select the attribute Question for grouping. So that

we get one column per answer option, we select the attribute Answer as the

index attribute. Now a new column will be created for each possible answer.

If there is a question/answer combination in the dataset, the appropriate cell

will be indicated in the row of the question and the column of the answer. If

there is no combination, this is indicated by a missing value. This can be easily

observed in the result, since there is only one question (i.e. question 1) with five

answer options - all other values in the relevant column are accordingly indicated
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as missing. Some answers, such as answer 1 to question 17, were never given.

Therefore this value is also missing.

We conclude the process with some cosmetic changes, replacing missing values

with a zero and putting the generated names of the columns that resulted from

the pivoting into the form
”
answer X“ using Rename by Replacing.

2.3.2 Reporting

This procedure differs considerably from the usual manipulating of tables, as is

known from spreadsheets and similar software. Why is worthwhile switching to

such a process-orientated approach? We see why the moment we want to perform

recurring tasks several times. We will illustrate this again by using our example.

We have only evaluated the created table for all participants up to now and now

want to look at different groupings, e.g. according to school type, school year or

sex.

In doing so, we become acquainted with a way of exporting results from Rapid-

Miner automatically. The reporting extension helps us here. We can comfortably

install RapidMiner now via the Help menu with the item Update RapidMiner if

this has not yet been done (note: The reporting extension for RapidMiner makes

it possible to produce static reports. With the RapidAnalytics server it is possible

to create dynamic web-based reports. This will not be discussed here however.)

After the installation, a new group of operators is available to us in the Operators

view, with which we can now automatically write process results into a report,

for example in PDF, HTML or Excel format. If we expand the group as shown

in fig. 2.7 we will see six new operators. Of these operators, Generate Report,

which begins a new report under a particular name, and Report, which receives

data from the process and attaches it to the report in a format to be specified,

are needed for each report.

It is already clear that the operator Generate Report must be executed before the

Report operator. The other relevant operators such as Add Text, Add Section and

Add Pagebreak each also fall back on an opened report. Add Text adds a text
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Figure 2.7: The reporting operators

at the current position of the report, Add Section begins a new breakdown level

and Add Pagebreak starts a new page. The result may be different depending

on the format. In the case of Excel files, page breaks correspond for example to

changing to a new worksheet.

In order to draw up a first report, we open a new report immediately after

loading the data. Note that the report is written into a file, and so you have

to adapt the path if using the 01.2 - Report Counts. An Add Section operator

produces a new Excel sheet, which we can give a name with the parameter report

section name. We then execute the processing steps until now, which can be

moved into a subprocess in order to divide them up better. If the results have

been computed, all you now need is the Report operator. You can select which

representation of the relevant object you would like to insert into the report

using the button Configure Report. Since we are interested in the data here, we

select the representation Data View under paramvalueData Table. It can then

be configured which columns and which rows one wants to incorporate into the

report – in this case we select all of them. Our process should now be roughly as

shown in fig. 2.8.
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Figure 2.8: A simple reporting process

As we can see, the reporting is smoothly inserted into the process logic. But

we are of course not only interested in the overall response behaviour, but want

to discover differences between the participant subgroups in particular. We will

use the following trick for this: We use a Loop Values operator that performs

its internal subprocess for each occurring value of a particular attribute. In this

subprocess we will reduce the dataset to the rows with the current value, then

aggregate as it usual and finally attach it as a report element.

Since we are interested in different groupings, we use a Multiply operator in order

to process the original dataset several times and insert different representations

into the report. In fig. 2.9 you can see how the process branches out at the

Multiply operator.

In order to use loops effectively, we need to familiarise ourselves with a further

facet of the RapidMiner process language: the macros. These process variables

can be used anywhere parameters are defined. A macro has a particular value

and is replaced by this value at runtime. In this case, the operator Loop Values

defines a macro which is allocated to the current value of the attribute. The

macro is therefore used here as a loop variable and is given a new value in each

loop pass. Macros can also be explicitly set in the process via a Set Macro or

Generate Macro operator or be defined for the process in the Context view.

The value of a macro can be accessed in any parameters by putting its name

between %{ and }. In the standard setting, the operator Loop Values will set a

macro with the name loop value. One then accesses its value via %loop value.
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Figure 2.9: A reporting process
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This can be seen in the process “01.3 - Report Counts with groups” in the first

Loop Values operator for example, which was called Sex, since it iterates over both

forms of the attribute
”
Sex“. If you open the subprocess with a double-click, the

first operator you will see is a Filter Examples operator, which only keeps rows

with an attribute Sex that is equal to the value of the macro loop value.

If we execute the process, we will see that an own worksheet is created for each

grouping in the generated Excel file, whilst the individual groups are listed one

below the other. The only flaw is the student group, which appears as school

year
”
0“ in the grouping by school year. Although this can soon be remedied

manually, we want to rectify this directly in the process.

In order to do this, we actually have to do less than before. We have to skip

writing into the report if we reach the value 0 for school year. Fortunately, we

do not only have operators for loops available, but also a conditional branching.

We can use the operator Branch for this, which has two subprocesses. One is

executed if the indicated condition is fulfilled, and the other if it is not fulfilled.

The condition can be set in the parameters. As well as data-dependent conditions

such as a minimum input table size or the like, a simple expression can also be

evaluated. An expression like ”%{loop value}”==”0” is true at the exact point

when the current value is 0. In our example, we want to execute the internal

subprocess at the exact point when this condition is not fulfilled. Thus we only

need to move our process until now into the Else subprocess for the school year,

as can be seen in fig. 2.10.

The result of this change can be looked at in process 01.04 - Report Counts with

groups and exceptions - Report Counts with groups and exceptions. After per-

forming the change, the rectified Excel file is available to us. The only annoying

thing when drawing up our report is the fact that we have inserted exactly the

same functionality into the subprocesses over and over again each time - once

for each kind of grouping. The complete subprocesses can of course be simply

copied, but if you want to supplement or modify a detail later on you then have

to repeat this in each individual subprocess.

In order to avoid this work, the entire logic can be transferred into an independent

process and the latter called up several times from another process. If you want
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Figure 2.10: The case differentiation in the Branch operator

to change something, you now only have to do this from a central point. For this

purpose, we can simply copy the logic of the subprocess into a new process, as

seen in 0.1.5 - Counting Process. This process is shown in full in fig. 2.11. This

process can now be simply dragged and dropped into another process. There it is

then represented by an Execute Process operator. The input and output ports of

the latter represent the input ports of the process if the use inputs parameter of

the operator has been switched on. We can therefore replace all subprocesses now

by simply calling up this process and make changes centrally from then on. The

result can be looked at in 01.5 - Reusing Processes. If you perform the process,

you will notice no difference in the results.

Thus we have seen how you can easily produce a report with statistical evaluations

using RapidMiner. If the underlying data changes or is supplemented, you can

quickly update the report by re-executing the process, especially in the case of

fully automatic execution in RapidAnalytics.

Of course, it is also possible to apply prediction models (as they are used in

section 2.1) to this data. So it would make good sense for example, in the use

case at hand, to determine the influence of the school year on the selected answers

by means of a linear regression or extract similar information using Bayesian
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Figure 2.11: The entire processing logic as an own process

methods. As you can see, the possibilities are practically unlimited. If you try

RapidMiner out you will most certainly be able to develop and implement your

own ideas quickly.
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In section 2.1 we used RapidMiner to perform as complete an evaluation of a new

procedure as possible with little effort. We saw how to establish the evaluation

on a wide data base, how to optimise parameters fairly for all procedures and

how to evaluate the results. If you are pleased with the results, you may now

want to publish your results in a magazine, at a conference or in a book. A

good publication should enable the reader to understand, compare and continue

developing the obtained results and perform further analyses based on these.

In order to ensure this, three components are necessary: The implemented new

algorithms, the performed processes and the used data. These can of course not

(or not sufficiently) be printed as part of a publication, but could be easily made

accessible by linking to internet sources.

Unfortunately, experience shows that this is often not the case. This leads to

a large part of scientific work being used to reproduce work already done for

comparison purposes instead of reusing results.

In this chapter we will show how, using suitable portals on the internet, algo-

rithms, processes and data can be easily published and made accessible for the

academic world as well as possible users.

You will therefore increase the quality of your publication and the visibility and

quotability of your results significantly.

33



3. Transparency of publications

3.1 Rapid-I Marketplace: App Store for
RapidMiner-extensions

In order to make self-implemented procedures accessible to the public, it makes

good sense to offer them on the Marketplace for RapidMiner. You will find this

at http://marketplace.rapid-i.com. On this platform, every developer can

offer his RapidMiner extensions and use extensions provided by other developers.

Using the marketplace is free of charge for RapidMiner users and for extension

providers. Extensions offered on the Marketplace can be installed and updated

directly from the RapidMiner user interface. The function Update RapidMiner is

available in the Help menu for this purpose. This is therefore the simplest kind

of installation for the user.

The Marketplace offers a number of advantages compared to publication on inter-

nal institute pages: This includes optimum visibility in the RapidMinerCommu-

nity, simple installation and commenting and rating functions. If a user opens a

process which needs your extension, but the user has not installed it, RapidMiner

will automatically suggest the installation.

Even if you decide to make a publication on the Marketplace, there is no harm in

continuing to run your own page offering documentation, examples, background

information and possibly source code. This is even explicitly recommended, and

a link to this page can be created in the Marketplace.

In order to offer an extension, just register at http://marketplace.rapid-i.com

and then send a hosting query via the contact menu. This will be briefly examined

by Rapid-I for plausibility and conflicts with other extensions and will then be

confirmed within the shortest time.

Please note that it is of course all the more important to adhere to the general

naming conventions, spelling and documentation guidelines if you want to make

the extension accessible to other users. This should definitely be considered

from the beginning, since the changing of parameter names or operator keys for

example renders processes created up to that point unusable. The parameters

for other users should also be given as self-explanatory a name as possible and
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Figure 3.1: The descriptions of RapidMiner extensions can be edited in the Mar-

ketplace (in this case the Community Extension, which is described

below).
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be well-commented. A detailed documentation and example processes then put

the icing on the cake in terms of comfort.

3.2 Publishing processes on myExperiment

Irrespectively of whether you use a self-implemented RapidMiner extension in

your processes or not, it is often desirable to share your own processes easily with

the community of scientists and data analysts. The portal myExperiment.org is

a social network that addresses scientists and offers the possibility of exchanging

and discussing data analysis processes.

By making your RapidMiner processes available on this site, you will achieve a

greater distribution of your results and ensure a clear and lasting quotability at

the same time. You will continue to benefit from the opportunity to exchange

with other scientists and make new research contacts. Last but not least, myEx-

periment can be an outstanding source if you are looking for inspiration regarding

the solution of a data analysis problem – no doubt others have already dealt with

similar problems.

In order to use myExperiment, you do not have to painstakingly upload or down-

load the processes via a web browser. Instead, you can do this directly from the

RapidMiner user interface using the Community Extension. You can also install

these via the Marketplace (and the RapidMiner update server). As soon as you

have done this, RapidMiner will have a new view named MyExperiment Browser.

You can activate this via the View menu and the item Show View. You can sort

this view into any place within any perspective and of course hide it again.

The browser allows you to log in with an existing user account or register with

MyExperiment in order to create a user account. You will need this account to

upload processes. All processes saved on MyExperiment are shown in the list. If

you select an item in the list, the picture of the appropriate process will appear

in the right-hand window as well as the description and meta data such as author

and date of creation. This process can then be simply downloaded with the Open

button and opened and executed directly in RapidMiner. Alternatively, you can
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Figure 3.2: The RapidMiner Community Extension for accessing myExperiment

also look at the process in the browser via the myExperiment website. To do

this, just click on the Browse button. A process can also be clearly identified

with the URL opened here, meaning it can be used for quoting.

In order to upload your own process on myExperiment, open the desired process

and arrange it in the desired way. The subprocess currently displayed is uploaded

as a picture on myExperiment and appears when browsing. So an attractive and

clear arrangement pays off here. You can then click on Upload in the Browse

MyExperiment view. The window shown in fig. 3.2 opens and offers you fields for

entering a title and a description. The general language used on myExperiment

is English.

3.3 Making data available

MyExperient cannot undertake the task of saving the data as there are not enough

resources, therefore the publishing of our data has to be done by other means,
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provided that it is allowed to publish the data and there are no restriction as a

result of copyright or data confidentiality. Thanks to the capability of RapidMiner

to use data from nearly any source this is not a problem.

What would probably be the simplest way in many cases would be to export

the data first as a CSV file and store the exported file on any web server. In

RapidMiner, we can now open this address with an Open File operator which

can also process data from internet sources. This operator does not interpret the

data first of all, but supplies a File object for this file. We can then place this

object at the file entrance of the Read CSV operator in order to interpret the file

as a CSV and load the dataset. The Read CSV operator can be easily configured

with the wizard, and the wizard can be executed on a local copy of the file for the

sake of convenience. If you now remember to set the same encoding at the time

of export as a CSV and at the time of import, there will be no longer anything

standing in the way of publication.

If experiments are conducted on large datasets or datasets containing a lot of

text, the datasets can also be stored compressed in a Zip file and you can have

these extracted by RapidMiner. This avoids unnecessary waiting times when

downloading and a high server utilisation. Both cases are demonstrated in the

process 00.8 - Load Data from URL.
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Using RapidMiner is also worthwhile in teaching. This offers several advantages.

One of the biggest advantages is without doubt the fact that RapidMiner is

available for free download in the Community Edition. Students can therefore

install it on their private computers in just the same way as the university can

make RapidMiner installations available on institute computers. Thus getting

started is fast and free of charge. Thanks to RapidMiner’s wide distribution,

students also have the opportunity during their studies of working with a tool

that they may actually use at work later on.

The numerous learning procedures contained in the core and in the extensions

cover the majority of typical lectures in the areas of data mining, machine learn-

ing and inferential statistics. It is therefore possible for the student to use and

compare the learned procedures directly without too much effort, leading to a

longer learning effect than with a purely theoretical observation of the algorithms

and their characteristics.

It is not unusual for students to develop their own algorithms and learning pro-

cedures in the context of internships, seminars, assignments or exercises. If this

takes place within the RapidMiner framework, existing infrastructure can be

reused. Evaluating the procedure or connecting to data sources for example is

made substantially easier. In this way the students can concentrate on imple-

menting the actual algorithm. Besides, it is highly motivating for the student if

the result of such work can continue to be used after they have graduated. In the

case of distribution as a RapidMiner extension, this is much more likely than with

39



4. RapidMiner in teaching

a single solution that is not incorporated in any framework. This is heightened

further by the increased visibility when using the Rapid-I Marketplace.

Since many universities already use RapidMiner in teaching, there is already a

wealth of experience as well as teaching materials that can be reused.

Joining the mailing list

https://lists.sourceforge.net/lists/listinfo/rapidminer-sig-teaching

is worthwhile for exchanging experiences, materials and ideas for teaching with

RapidMiner.
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5 Research projects

Finally, we would now like to outline once more how RapidMiner is actually used

at Rapid-I for research purposes. This chapter gives an overview of the various

ways in which data mining techniques can be used in various disciplines and also

be a stimulus for future projects.

e-LICO. (http://www.e-lico.eu) Within this EU project, in which eight uni-

versities and research establishments were involved alongside Rapid-I, a platform

was developed from 2009 to 2012 enabling even expert scientists without a statis-

tical or technical background to use data mining technologies. One of the things

created was an assistant which fully automatically generated data mining pro-

cesses after the user had specified input data and an analysis goal with a few

clicks. The development of the server solution RapidAnalytics also began in the

context of this project.

ViSTA-TV. (http://vista-tv.eu/) This project, which was also funded by the

EU in the Seventh Framework Programme, is concerned with the analysis of data

streams as they are generated by IPTV and classic television broadcasters. The

goal is to improve the user experience by offering suitable recommendations for

example and an evaluation for market research purposes.

SustainHub. (http://www.sustainhub-research.eu/) Unlike the two projects

first mentioned, the SustainHub project is not rooted in an IT-oriented but in

an application-orientated EU funding programme. It concerns the utilisation of
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sustainability information in supply chains and the recognition of abnormalities

for the purpose of risk minimisation. Methods of statistical text analysis are also

used to automatically investigate messages for their relevance to this topic.

ProMondi. The goal of the ProMondi project funded by the Federal Ministry of

Education and Research (BMBF) is to optimise the product development process

in the manufacturing industry. For example, the influences on assembly time are

to be recognised by data mining techniques as early as at design time and suitable

alternatives determined.

Healthy Greenhouse. (http://www.gezondekas.eu) The project
”
Gezonde

Kas“ is an Interreg IV A EU programme, within the framework of which ten

research establishments and 22 enterprises from the German-Dutch border area

are developing an innovative integrated plant protection system intended to en-

able a sustainable management of modern horticultural enterprises. Data mining

techniques are used here for example to recognise possible diseases and pests early

on and get by with fewer pesticides or to analyse the influence of environmental

factors on plant growth and health.

This overview may be a stimulus for your own research ideas. Rapid-I will con-

tinue to conduct both application-orientated projects and projects in the field

of data mining on a national and international level. If you are interested in a

research partnership, get in touch at research@rapid-i.com.
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