
S. Kirstein, S. Land, D. Halfkann

RapidMiner 7
How to extend RapidMiner





Sabrina Kirstein, Sebastian Land, Dominik Halfkann

RapidMiner 7
How to extend RapidMiner

January 25, 2016

RapidMiner
www.rapidminer.com



© 2016 by RapidMiner GmbH. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by means electronic, mechanical, photocopy-
ing, or otherwise, without prior written permission of RapidMiner GmbH.



Contents

1 Introduction 1

2 Setting Up The Environment 3
2.1 Using Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Installing Java . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Downloading and installing Eclipse . . . . . . . . . . . . 4
2.1.3 Installing the Gradle plugin . . . . . . . . . . . . . . . . . 6
2.1.4 Importing the extension template . . . . . . . . . . . . . 8
2.1.5 Using build.gradle . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Using a Simple Editor . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Installing Java . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Downloading and installing your favorite text editor . . 11
2.2.3 Downloading the extension template . . . . . . . . . . . 11
2.2.4 Using build.gradle . . . . . . . . . . . . . . . . . . . . . . 11

3 Individualizing Your Extension Settings 13
3.1 Changing settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

V



Contents

3.2 Initializing the project . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Adding an extension icon . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Installing the extension . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Starting RapidMiner Studio . . . . . . . . . . . . . . . . . . . . . 16

4 Creating Your Own Operator 17
4.1 Extension Project Folder Structure . . . . . . . . . . . . . . . . . 18
4.2 Creating an Operator Class . . . . . . . . . . . . . . . . . . . . . 21
4.3 Changing Congurations . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 Coloring your operator . . . . . . . . . . . . . . . . . . . 25
4.3.2 Testing your operator . . . . . . . . . . . . . . . . . . . . 25

5 Input and Output Ports 27
5.1 Adding Input and Output Ports . . . . . . . . . . . . . . . . . . . 28

5.1.1 Example operator generating a new example set . . . . 32
5.2 Adding Preconditions to Input Ports . . . . . . . . . . . . . . . . 35
5.3 Adding Generation Rules to Output Ports . . . . . . . . . . . . . 36
5.4 Dynamically Adding Ports with the PortPairExtender . . . . . . 38

5.4.1 Adding through ports . . . . . . . . . . . . . . . . . . . . 39

6 Adding Operator Parameters 41
6.1 Expert parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Using parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Parameter dependencies . . . . . . . . . . . . . . . . . . . . . . 44

7 Providing Operator Documentation 47

8 Publishing Your Own Extension 51

9 Advanced Enhancements 57
9.1 The PluginInit class . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.2 Creating Super Operators . . . . . . . . . . . . . . . . . . . . . . 58

9.2.1 Using the PortPairExtender for super operators . . . . . 59
9.3 Adding Your Own Data Objects . . . . . . . . . . . . . . . . . . . 67

9.3.1 Dening the object class . . . . . . . . . . . . . . . . . . . 68
9.3.2 Conguration . . . . . . . . . . . . . . . . . . . . . . . . . 69

VI



Contents

9.3.3 Processing your own IOObjects . . . . . . . . . . . . . . 70
9.3.4 Looking into your IOObject . . . . . . . . . . . . . . . . . 72

9.4 Creating Custom Congurators . . . . . . . . . . . . . . . . . . . 77
9.4.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

9.5 Adding Custom User Interface Elements . . . . . . . . . . . . . 83
9.5.1 Adding custom panels . . . . . . . . . . . . . . . . . . . . 83
9.5.2 Adding custom settings to the Preferences dialog . . . . 85

VII





CHAPTER1

Introduction

You have probably already installed RapidMiner Studio and played around
with the enormous set of operators.

And maybe in that learning, even with the huge number of functions pro-
vided by RapidMiner, you have stumbled on a problem that is unsolvable or
only solvable with what seems to be a too-complex process. Don’t despair!
You can build your own extension to RapidMiner, providing new operators
and new data objects and still have all the functionality of RapidMiner.

To create your own extension, it is best to go through the step-by-step guide:

1. Set up your development environment

2. Individualize the extension template

3. Create your own operator

1



1. Introduction

4. Use input and output ports

5. Use operator parameters

6. Document the behavior of your operator

7. Finally, publish your extension on the Marketplace

To create more advanced enhancements to RapidMiner, the Advanced En-
hancements section describes how to:

• Build a super operator

• Create your own data objects

• Make custom congurators

• Create custom graphical elements and individualize the Preferences
dialog

2



CHAPTER2

Setting Up The Environment

There is this great IDE (integrated development environment) vs. text editor
debate when it comes to programming.

There are two types of programmers; those who prefer full featured IDE’s
and those who prefer a lightweight text editor. You can use your favorite
when developing your extension.

• If you decide to develop your extension with the IDE Eclipse, click here.

• If you want to use your favorite text editor, click here.

Don’t know which one to choose? Try Eclipse and see how it works for you.

3



2. Setting Up The Environment

2.1 Using Eclipse

2.1.1 Installing Java

The rst step of setting up your development environment is installing Java,
if you haven’t already. You can download Java here.

2.1.2 Downloading and installing Eclipse

To work with Eclipse:

1. Go to the Eclipse website and download the Eclipse installer for your
operating system.

2. Execute the installer and select the package Eclipse IDE for Java
Developer.

4



2.1. Using Eclipse

3. Select the installation folder and click on Install.

4. Click Launch to start Eclipse.

5. When Eclipse starts, a window pops up prompting you to select a work-
space. Select the folder for storing your Eclipse projects. Click on the
checkbox to keep this setting each time you open Eclipse.

You should now see the Eclipse Welcome screen (see Figure 2.1). If you
have never used Eclipse before, try the tutorials and play aroundwith Eclipse
before proceeding. When you are ready to proceed, switch to theworkbench
(click the arrow in the upper right corner).

Eclipse tricks you should know:

1. To display a list of all keyboard shortcuts, press Ctrl+Shift+L.

2. Press Ctrl+Space in the Java editor to get a list of suggested comple-
tions. Typing some characters before pressing Ctrl+Space will shorten
the list.

3. Code completion supports camel case patterns (for example, entering
’NPE’ and pressing Ctrl+Space will propose NullPointerException).

4. Select an opening or closing bracket and press Ctrl+Shift+P to nd its
matching bracket.

5



2. Setting Up The Environment

Figure 2.1: The Eclipse start screen

5. Type /** and press enter to automatically add a JavaDoc comment
stub.

6. Press Ctrl+Shift+O to organize all imports automatically.

7. Press Ctrl+1 to show possible xes for a problem or possible actions.

2.1.3 Installing the Gradle plugin

Next, install the Gradle plugin for Eclipse. Open the Eclipse Help menu and
click on Eclipse Marketplace.... Search for Gradle IDE Pack and install the
plugin. You then need to restart Eclipse.

6



2.1. Using Eclipse

Figure 2.2: The Eclipse Marketplace

Open the new Gradle Tasks view for later use. To do this, open the Win-
dow > Show Viewmenu and click on Other.... Search for gradle and select
the Gradle Tasks view. This view now opens in your Eclipse. Move it to an
appropriate place (Figure 2.3).

7



2. Setting Up The Environment

Figure 2.3: The Eclipse platform

2.1.4 Importing the extension template

To import the template:

1. Open the RapidMiner GitHub page in your browser.

2. Select the repository rapidminer-extension-template.

3. Clone the repository or download and unpack the .zip le into your
workspace you selected when starting Eclipse the rst time.

4. Open Eclipse, right-click on the Package Explorer view.

5. Select Import..., search for gradle and select Gradle Project. Then
click Next.

8



2.1. Using Eclipse

6. Browse for the folder that you just unpacked or cloned and click Finish.

(If you use an older version of Eclipse than 4.5.1, you need to browse for the
folder, click Build model, select the complete project and click Finish.)

2.1.5 Using build.gradle

You can now see the imported project in the Repository Manager view (see
Figure 2.4).

Open the project, double-click the le build.gradle to open it, and proceed
to the next step - giving your extension an individual name and settings.

9



2. Setting Up The Environment

Figure 2.4: Eclipse with build.gradle le opened.

10



2.2. Using a Simple Editor

2.2 Using a Simple Editor

2.2.1 Installing Java

The rst step of setting up your development environment is installing Java,
if you haven’t already. You can download Java here.

2.2.2 Downloading and installing your favorite text editor

The next step, if necessary, is installing your favorite text editor. For example,
the Emacs text editor is popular.

2.2.3 Downloading the extension template

Once you have the tools, open the RapidMiner GitHub page in your browser.
Select the repository rapidminer-extension-template.

Clone the repository or download and unpack the .zip le.

2.2.4 Using build.gradle

Open the le build.gradle of the extension template project in your text ed-
itor and proceed to the next step - giving your extension an individual name
and settings.

11





CHAPTER3

Individualizing Your Extension Settings

If you didn’t open the le build.gradle in the extension template project yet,
open it now.

3.1 Changing settings

First change themarked rows (see Figure 3.1) in the build.gradle le tomeet
your individual needs:

• Give your extension a name

• Dene the groupId (it will be the name of your Java package)

• Dene the vendor

13



3. Individualizing Your Extension Settings

Figure 3.1: build.gradle le with marked lines.

• Specify your website

• If your extensiondepends onother RapidMiner extensions, dene them
as extension dependencies

• If your extension depends on third-party libraries, dene them as de-
pendencies

(You don’t know how to use libraries in Gradle? Check out the Gradle User

14



3.2. Initializing the project

Guide chapter about dependency management.)

3.2 Initializing the project

To start, open a command prompt (for Windows, it is, for example, the Win-
dows Power Shell). Browse to the extension template project and execute
the following command:

./gradlew initializeExtensionProject

If you are using Eclipse, refresh the project folder. You can then see that the
project is initialized and has source folders (which are waiting for your code).

If a simple refresh did not work, try a right-click on your project and select
Gradle > Refresh all.

15



3. Individualizing Your Extension Settings

3.3 Adding an extension icon

The next step is to select an icon (48x48 pixels) for your extension. Name
it icon.png and put it into the folder src/main/resources/META-INF. If the
folder META-INF does not yet exist, create it and put your icon inside. If you
are using Eclipse, refresh the project folder.

3.4 Installing the extension

If you are using Eclipse, select the project in the Gradle Tasks view and
double-click the task installExtension.

Otherwise, open a command prompt, browse to the extension template
project, and execute the following command:

./gradlew installExtension

3.5 Starting RapidMiner Studio

If RapidMiner Studio is not yet installed, download and install it. Then, open
RapidMiner Studio and check whether your extension was loaded success-
fully. To check, open the Extensions > About Installed Extensionsmenu.
You should see an entry About NAME Extension... with your extension’s
name. Select this entry and verify that the icon is loaded successfully and
the vendor and URL are shown correctly.

Next, create your own operator.

16



CHAPTER4

Creating Your Own Operator

There are two types of operators in RapidMiner - normal and super opera-
tors. Super operators contain one or more sub processes. This guide starts
with implementing a normal operator, but you can check out the advanced
enhancements to learn how to develop a super operator.

In this section:

• Learn about the structure of the extension project and what each le
does.

• Create your own operator class.

• Congure settings to load the operator into RapidMiner Studio.

17



4. Creating Your Own Operator

4.1 Extension Project Folder Structure

The folder structure of the extension project looks like this:

In the section on individualizing settings, you learned how to change the
build.gradle le to make your individual extension. Statements like the ex-
tension name and the groupId are used to create the folder structure of your

18



4.1. Extension Project Folder Structure

extension project. The groupId, for example, is the root path of your Java
packages. The extension name is used to name the les of your project. The
name of the example extension is MyTest.

The folder src/main/java contains your Java code, while src/main/resources
contains congurations, documentation and the extension icon.

The following table describes the dierent generated les in your extension
project (replace ’NAME’ with the name of your extension):

File name Description

PluginInitNAME.java The Java class PluginInitNAME.java loads the
extension into RapidMiner Studio. It con-
tains certain methods that you can specify
to add actions (for example, during the ex-
tension start-up or before closing the appli-
cation). When using the extension on your
RapidMiner Server, only the method initPlu-
gin() is called.

groupsNAME.properties Species operator or data object colors.
ioobjectsNAME.xml Denes IOObjects (data objects), how they

are called, their implementation class, and
the renderer that renders the data object in
the Results perspective.

OperatorsNAME.xml Species operators and operator groups, as
well as their location in theOperator Tree of
the Operators view.

parserulesNAME.xml Automatically updates operator parameters
(not frequently used).

settingsNAME.xml Species settings in the Preferences dialog.
ErrorsNAME.properties Stores I18N error messages. You can

load an error message in your code with
I18N.getErrorMessage(key, arguments);.

GUINAME.properties Stores I18N GUI messages. You can

19



4. Creating Your Own Operator

load a message in your code with
I18N.getGUIMessage(key, arguments);

OperatorsDocNAME.xml Contains translations from operator group
keys to names as well as operator keys to
names.

SettingsNAME.properties Contains user-friendly setting names and
descriptions for setting keys dened in
settingsNAME.xml. The names and descrip-
tions are shown in the Preferences dialog.

UserErrorMessagesNAME
.properties

Contains user error messages for operators.
They are displayed, when the code in an op-
erator detects wrong parameter settings or
otherwise encounters a problem. For each
error name, you must dene the properties
error.error_name.name (name of the error),
error.error_name.short (short error mes-
sage) and error.error_name.long (long er-
ror message). Example use of an user error
in your code: throw new UserError(this,
exception.getMessage(), "error_name");.

example_operator_key.xml Provides an example of operator documen-
tation. The le is placed in the folder
mytest.example_group. Create one folder,
called NAME.group_name, per operator group
and add one XML le per operator to the re-
spective group folder.

Now, you know how the project is structured. It’s time to build your rst
operator class.

20



4.2. Creating an Operator Class

4.2 Creating an Operator Class

Time to create a new class for your operator. Each normal operator has to ex-
tendOperator or a subclass ofOperator. There aremany subclasses formore
specialized operators (e.g., learning operators), but this example uses the
simplest case. Frequently used subclasses of Operator are AbstractLearner,
AbstractReader and AbstractWriter. If you are interested in more, take a look
at the type hierarchy of Operator.

1. Create a new package for your operator class. It should have the name
groupId.operator.

2. Create a new Java class with a meaningful name. The class has to ex-
tendOperator from the RapidMiner core. You have to override the con-
structor.

That’s it. Your operator class should look like this:

But wait! You want the operator to do something. Therefore, override the
method doWork(). The default implementation simply does nothing. In this
example, the operator will write logs to the Log panel.

21



4. Creating Your Own Operator

This is the code of the operator structure:

package com.rapidminer.extension.operator;

import java.util.logging.Level;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.tools.LogService;

/**
* Describe what your operator does.
*
* @author Insert your name here
*
*/

public class MyOwnOperator extends Operator {

/**
* @param description
*/

22



4.3. Changing Congurations

public MyOwnOperator(OperatorDescription description) {
super(description);

}

@Override
public void doWork() throws OperatorException {

LogService.getRoot().log(Level.INFO, "Doing something...");
}

}

Once you have implemented an operator, you’ll want to test it in RapidMiner.
Unfortunately, RapidMiner isn’t prophetic. (Actually it could be, but using
data mining methods for guessing class usage would be overkill.) Instead,
you must specify class use.

4.3 Changing Configurations

To test your operator in RapidMiner Studio, youmust rst change some con-
guration in the extension project. Adapt the following two les (replace
’NAME’ with the name of your extension):

• OperatorsNAME.xml

• OperatorsDocNAME.xml

Here is how to make your operators available to RapidMiner:

1. Decide on a name of the operator group to put the operator in.

2. Open the le OperatorsNAME.xml and add the new group with a key.

3. Add an operator tag. The operator has a key, the class (with the com-
plete package path) and, optionally, an icon. If an icon is already part
of the RapidMiner Core, you can just use it.

23



4. Creating Your Own Operator

Otherwise:

• Create the folder com.rapidminer.resources.icons and subfold-
ers called 16, 24 and 48.

• Paste the icon you want to use in the sizes 16x16 pixels, 24x24
pixels and 48x48 pixels in the respective folder.

• Add a 96x96 pixels version of the icon directly to the folder
com.rapidminer.resources.icons.

At this point you can already build the extension and use it in RapidMiner
Studio. You could see the operator in theOperator Tree, but its namewould
be the key. Instead, you need to dene a translation from the key to the
operator name in the le OperatorsDocNAME.xml. Dene the key and name
for every operator and the operator group.

24



4.3. Changing Congurations

4.3.1 Coloring your operator

If you want your operator to have a specic color, open the le
groupsNAME.properties and add a color for your operator group. Use the
operator group key to dene the operator group and use a Hex code to de-
ne the operator color. For example:

# Operator group colors
group.operator_test.color = #5FDE35

4.3.2 Testing your operator

The following section describes how to test your operator.

Installing the extension

To install the extension:

• If you are using Eclipse, select the project in the Gradle Tasks view and
double-click the task installExtension.

• If using a text editor, open a command prompt, browse to the extension
template project and execute the following command:

./gradlew installExtension

Starting RapidMiner Studio

Open RapidMiner Studio and nd your operator group in the Operators
Tree panel in the Extensions group. Drag the new operator on to the pro-
cess canvas. Verify that the operator has the color and icon that you dened
and that it has a name instead of a key. You can run the process and the

25



4. Creating Your Own Operator

operator will produce a log entry, but depending on the purpose of your op-
erator, there might be something missing.

It might be helpful to add input and output ports, for example, if your oper-
ator should process an example set. Look at the Parameters panel and the
Help panel, and you’ll see that there are not yet parameters that you can set
or help for your operator. Adding parameters to your operator helps users to
congure how your operator should be executed. Adding documentation to
your operator is obviously useful. Use it to explain what your operator does
and which parameters can be set. You can even add sample processes.

26



CHAPTER5

Input and Output Ports

You dene ports to get input from the process and to deliver results. In these
pages:

• Learn to add ports to your operator.

• Set preconditions to allow only certain input types in your operator and
to enable meta data handling.

• Set generation rules to reect the changes made by your operator in
the meta data.

• Use a PortPairExtender to, for example, create throughput ports that
simply pass given data through the operator. (This is mostly used to
inuence the execution order when the operator itself does not need
input and output ports.)

27



5. Input and Output Ports

5.1 Adding Input and Output Ports

To dene ports, you simply add them as private variables using the following
lines of code:

private InputPort exampleSetInput = getInputPorts()
.createPort("example set");

private OutputPort exampleSetOutput = getOutputPorts()
.createPort("example set");

You can add more input ports, but you must set unique names for input
ports and output ports for each operator. To follow the name convention,
write the names in lower case and use blanks to separate words.

To ll the doWork() method with content, add a new attribute with random
values from 1 to 10 to the example set received from the input port. You
receive the example set by calling:

ExampleSet exampleSet = exampleSetInput.getData(ExampleSet.class);

Now, create a new attribute by using the AttributeFactory. Dene a name
for the new attribute and select the type of the new attribute. The class
Ontology contains constants for the dierent types.

// get attributes from example set
Attributes attributes = exampleSet.getAttributes();
// create a new attribute
String newName = "newAttribute";
// define the name and the type of the new attribute
// valid types are
// - nominal (sub types: binominal, polynominal, string, file_path)
// - date_time (sub types: date, time)
// - numerical (sub types: integer, real)

28



5.1. Adding Input and Output Ports

Attribute targetAttribute = AttributeFactory
.createAttribute(newName, Ontology.REAL);

Set the table index of the new attribute and add it to the attributes of the
example set.

targetAttribute.setTableIndex(attributes.size());
exampleSet.getExampleTable().addAttribute(targetAttribute);
attributes.addRegular(targetAttribute);

Add a value for each example of the new attribute:

for(Example example:exampleSet){
example.setValue(targetAttribute, Math.round(Math.random()*10+0.5));
}

After adding randomvalues to the example set, deliver the resulting example
set to the output port:

exampleSetOutput.deliver(exampleSet);

The complete operator class now looks like it is shown in Figure 5.1.

Install the extension again (with the Gradle task) and restart RapidMiner Stu-
dio. You can see that the operator now has an input and output port (Figure
5.2).

When you run the process that loads sample data and applies the example
operator on it, you can see that the new attribute appears in the resulting
example set (Figure 5.3).

The next step is to dene preconditions to be sure that you only get the type
of input you want to process.

29



5. Input and Output Ports

Figure 5.1: Operator class with ports

30



5.1. Adding Input and Output Ports

Figure 5.2: Operator with connected input and output ports

Figure 5.3: Operator result - example set with new attribute

31



5. Input and Output Ports

5.1.1 Example operator generating a new example set

This example shows an operator, which creates a completely new example
set with one nominal and one numerical attribute.

Figure 5.4: Example operator result - generated example set with a nominal
and a numerical attribute

Check out the code:

package com.rapidminer.operator;

import java.util.LinkedList;
import java.util.List;
import java.util.UUID;
import com.rapidminer.example.Attribute;
import com.rapidminer.example.ExampleSet;
import com.rapidminer.example.table.AttributeFactory;
import com.rapidminer.example.table.DoubleArrayDataRow;
import com.rapidminer.example.table.MemoryExampleTable;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.ports.OutputPort;

32



5.1. Adding Input and Output Ports

import com.rapidminer.tools.Ontology;

public class MyOwnOperator extends Operator {

private OutputPort exampleSetOutput = getOutputPorts()
.createPort("example set");

/**
* @param description
*/

public MyOwnOperator(OperatorDescription description) {
super(description);
getTransformer().addGenerationRule(exampleSetOutput,

ExampleSet.class);
}

@Override
public void doWork() throws OperatorException {

// create the needed attributes
List<Attribute> listOfAtts = new LinkedList<>();
ExampleSet exampleSet;

Attribute newNominalAtt = AttributeFactory
.createAttribute("ID",

Ontology.ATTRIBUTE_VALUE_TYPE.NOMINAL);
listOfAtts.add(newNominalAtt);

Attribute newNumericalAtt = AttributeFactory
.createAttribute("random number",

Ontology.ATTRIBUTE_VALUE_TYPE.NUMERICAL);
listOfAtts.add(newNumericalAtt);

// basis is a MemoryExampleTable, so create one
// and pass it the list of attributes it

33



5. Input and Output Ports

// should contain
MemoryExampleTable table = new

MemoryExampleTable(listOfAtts);

for (int i = 0; i < 10; i++) {
// every row is a double array internally;
//create and fill in data
double[] doubleArray = new

double[listOfAtts.size()];
doubleArray[0] = newNominalAtt.getMapping()

.mapString(UUID.randomUUID().toString());
doubleArray[1] = Math.random();
// create an example
// create a DataRow from our double array
// and add it to our table
table.addDataRow(new

DoubleArrayDataRow(doubleArray));
}

// finally create the ExampleSet from the table
exampleSet = table.createExampleSet();

exampleSetOutput.deliver(exampleSet);
}

}

This operator just creates 10 random examples. An enhancement could be
to create a parameter that denes how many examples the operator cre-
ates.

34



5.2. Adding Preconditions to Input Ports

5.2 Adding Preconditions to Input Ports

As you saw after starting RapidMiner Studio, the operator works. However,
it does not alert the user if nothing is connected or an object of wrong type
is connected to the input port. To change this behavior and improve oper-
ator usability, you can add preconditions to the ports. These preconditions
will register errors, if they are not fullled and are registered at the time of
operator construction. To do so, add a few code fragments to the construc-
tor. For example, this precondition checks whether a compatible IOObject is
delivered:

public MyOwnOperator( OperatorDescription description ){
super(description);
exampleSetInput.addPrecondition(

new SimplePrecondition( exampleSetInput,
new MetaData(ExampleSet.class) ));

}

Since this is one of themost common cases, you can use a shortcut to achieve
it. Specify the target IOObject class when constructing the input port:

private InputPort exampleSetInput =
getInputPorts().createPort("example set", ExampleSet.class);

There are many more special preconditions. Some test whether an example
set satises specic conditions, whether it contains a special attribute of a
specic role, whether an attribute with a specic name is inserted, and oth-
ers. For example, you could add a precondition that tests if the attribute test
is part of the input example set. The attribute can have any type.

exampleSetInput.addPrecondition(
new ExampleSetPrecondition( exampleSetInput,

new String[]{"test"}, Ontology.ATTRIBUTE_VALUE) );

35



5. Input and Output Ports

The ExampleSetPrecondition can also checkwhether the regular attributes are
of a certain type, which special attributes have to be contained, and of which
type they must be. If the user inserts the operator into a process without
connecting an example set output port with the input port, an error is shown.
If the user attaches an example set without the test attribute, a warning is
shown.

The next step is to dene generation rules for output ports.

5.3 Adding Generation Rules to Output Ports

At this point, if you connect your operator with another operator that re-
ceives an ExampleSet object, it alerts that it hasn’t receive the correct object.
This is because your operator hasn’t yet done transformation of the meta
data. It makes use of the meta data to check the preconditions, but doesn’t
deliver it to the output port. You can change this by adding generation rules
in the constructor:

public MyOwnOperator( OperatorDescription description ){

super(description);
exampleSetInput.addPrecondition(

new ExampleSetPrecondition( exampleSetInput,
new String[]{"test"}, Ontology.ATTRIBUTE_VALUE ));

getTransformer().addPassThroughRule(exampleSetInput,
exampleSetOutput);

}

This rule simply passes the received meta data to the output port, which
causes the warning to vanish. However, the meta data doesn’t reect the
actual delivered data. Remember, you can add an attribute for that. This
should be reected in the meta data, which is why you must implement a

36



5.3. Adding Generation Rules to Output Ports

special transformation rule. To do so, use an anonymous class so that it
looks like this:

getTransformer().addRule(
new ExampleSetPassThroughRule( exampleSetInput, exampleSetOutput,

SetRelation.EQUAL){

@Override
public ExampleSetMetaData modifyExampleSet(

ExampleSetMetaData metaData ) throws
UndefinedParameterError{

return metaData;
}

});

However, this only passes the receivedmeta data to the output port, it doesn’t
account for changes to the meta data. By adding a hook, you can grab the
meta data and change it so that it reects the changesmade on the data dur-
ing operator execution. After adding the code, the method looks like this:

getTransformer().addRule(
new ExampleSetPassThroughRule( exampleSetInput, exampleSetOutput,

SetRelation.EQUAL){

@Override
public ExampleSetMetaData modifyExampleSet(

ExampleSetMetaData metaData ) throws
UndefinedParameterError {

metaData.addAttribute(
new AttributeMetaData("newAttribute",

Ontology.REAL));
return metaData;

}
});

37



5. Input and Output Ports

If you change the type and name of an attribute, you can also change the
meta data like this:

AttributeMetaData testAMD = metaData.getAttributeByName("test");
if(testAMD!=null){

testAMD.setType(Ontology.DATE_TIME);
testAMD.setName( "date(" + testAMD.getName() + ")" );
testAMD.setValueSetRelation(SetRelation.UNKNOWN);

}
return metaData;

You should change themeta data according to the changes of the data through
your operator.

If you don’t know the details of the outgoing data but you know the output
port type, you can add a very simple generation rule that denes the type
delivered at the output port.

getTransformer().addGenerationRule(exampleSetOutput,
ExampleSet.class);

In the next step, you will learn how to use the PortExtender.

5.4 Dynamically Adding Ports with the
PortPairExtender

Sometimes it’s useful to add ports that simply pass data through the oper-
ator without changing it - ’through’ ports. If your operator does not need
input and output ports, best practice is to add through ports to control the
process execution order. The PortPairExtender, a sub-class of PortExtender,
ensures that the through ports are pair-wise.

38



5.4. Dynamically Adding Ports with the PortPairExtender

The PortPairExtender is also used to pass input data from a super operator to
its subprocesses. You can nd more details in the advanced chapter about
super operators.

5.4.1 Adding through ports

To dene through ports, simply add a PortPairExtender as a private variable,
using the following code:

private final PortPairExtender dummyPorts =
new DummyPortPairExtender("through", getInputPorts(),

getOutputPorts());

Then, initialize the ports and add the pass through rule to handle the meta
data:

dummyPorts.start();
getTransformer().addRule(dummyPorts.makePassThroughRule());

Add the command to pass the data from the input through ports to the out-
put through ports at the end of the doWork()method.

dummyPorts.passDataThrough();

39



5. Input and Output Ports

Simple example operator with through ports

public class MyOwnOperator extends Operator {

private PortPairExtender dummyPorts =
new DummyPortPairExtender("through", getInputPorts(),

getOutputPorts());

public MyOwnOperator(OperatorDescription description) {
super(description);

dummyPorts.start();
getTransformer().addRule(dummyPorts.makePassThroughRule());

}

@Override
public void doWork() throws OperatorException {

LogService.getRoot().log(Level.INFO, "Doing something...");

// PASS THROUGH PORTS
dummyPorts.passDataThrough();

}
}

The next step is to add parameters to your operators.

40



CHAPTER6

Adding Operator Parameters

Ports handle the data that ows through your operator. You can, however,
also dene parameters that inuence the behavior of the operator.

Parameters are presented in the Parameters panel of RapidMiner Studio,
where users can alter the parameter’s values. There are several types of
parameters available for dening real or integer numbers, strings, and col-
lections of strings in combo boxes (either editable or not). Also available are
special types for selecting an attribute or several attributes. For the most
complex parameter type, you might even dene a GUI component as a con-
guration wizard.

Back to the operator class to add parameters. In fact, you just have to over-
ride one method:

@Override

41



6. Adding Operator Parameters

public List<ParameterType> getParameterTypes(){
return super.getParameterTypes();

}

Notice that you have to return a list of ParameterTypes. It’s good practice to
call the super method to retrieve the parameters dened in extending op-
erators or abstract classes that provide basic functionality. Otherwise, the
functionality provided by the super class might fail because you haven’t de-
ned the needed parameters.

For now, add a parameter dening which text should be logged to the con-
sole when the operator is executed. It looks like this:

@Override
public List<ParameterType> getParameterTypes(){

List<ParameterType> types = super.getParameterTypes();

types.add(new ParameterTypeString(
PARAMETER_TEXT,
"This parameter defines which text is logged to
the console when this operator is executed.",
"This is a default text",
false));

return types;
}

First, retrieve the list of ParameterTypes of the super class and then add
your own parameter. In this example, the parameter is of type String and
is named with the public constant PARAMETER_TEXT. The string that follows
should describe the functionality of the parameter type; it is shown in the
info tool tip of the parameter. The next string is the default value of the pa-
rameter, followed by the last parameter, which determines if the parameter
is expert or not. In this example, the parameter is not an expert parameter.

Before looking at the result, you must add the constant to the class. Simply

42



6.1. Expert parameters

dene a public constant:

public static final String PARAMETER_TEXT = "log text";

The Parameters panel now looks like this:

You could use the class ParameterTypeInt for integer values or Parameter-
TypeDouble for double values, but there are also ParameterTypes for les,
dates, category selection and much more. Check out which ParameterType
constructors are available!

6.1 Expert parameters

Parameters can be either normal or expert. Expert parameters aren’t shown
until the user switches to expert mode. Therefore, it is good practice to de-
ne parameters as expert if their eect is only understandable by those with
deeper knowledge of the underlying algorithm. All expert parameters must
have default values so that the user is not required to dene a parameter he
cannot understand. To enable this, simply dene in the constructor calls of
your ParameterTypes whether a parameter is an expert parameter or not.

43



6. Adding Operator Parameters

6.2 Using parameters

After dening the parameter, use it to individualize the message that your
operator writes to the Log panel. First, retrieve the value the user entered
and store it in a local variable:

String text = getParameterAsString(PARAMETER_TEXT);

Then, use the local variable to change the output of the operator. There are
several getParameterAsXXX()methods that you can call to get the value in the
correct type.

6.3 Parameter dependencies

Dening parameter dependencies provides the user with further guidance.
For example, someparametersmay only be used if other parameters are set.
Using these dependencies indicates to the user which parameterwill have an
eect preventing time spent with irrelevant parameters. If, for example, you
are familiar with the large amount of parameters that kernel-basedmethods
like the SVM oer, you probably understand why this is important.

You can add a Boolean parameter determining whether the operator should
log custom text. In this case, if checked, the user sees the parameter eld
for the text. To introduce another parameter with its constant:

public static final String PARAMETER_USE_CUSTOM_TEXT =
"use custom text"

Now, build a parameter condition like in the following code:

@Override

44



6.3. Parameter dependencies

public List<ParameterType> getParameterTypes(){
List<ParameterType> types = super.getParameterTypes();

types.add(new ParameterTypeBoolean(
PARAMETER_USE_CUSTOM_TEXT,
"If checked, a custom text is printed to the log view.",
false,
false));

ParameterType type = new ParameterTypeString(
PARAMETER_TEXT,
"This parameter defines which text is logged to
the console when this operator is executed.",
"This is a default text",
false);

type.registerDependencyCondition(
new BooleanParameterCondition(

this, PARAMETER_USE_CUSTOM_TEXT, true, true));

types.add(type);

return types;
}

For registering the condition, you had to remember the type in a local vari-
able, which is then added to the list separately. Here you added a
BooleanParameterCondition, which needs to reference a ParameterHandler.
For operators, this is the operator itself. The second argument is the name
of the references parameter. The two Boolean values indicate 1) if the pa-
rameter becomesmandatory if the condition is satised and 2) the value the
references parameter must have in order to full the condition.

The resulting parameter panel now looks like this, depending on the param-
eter settings:

45



6. Adding Operator Parameters

Figure 6.1: Parameter view with parameter condition

The next step is to document the behavior of your operator to provide help.

46



CHAPTER7

Providing Operator Documentation

It’s natural to add documentation to program code, but this does not help
the end user who never sees any part of the program code.

You have already congured the les OperatorsNAME.xml and
OperatorsDocNAME.xml to provide the operator with an icon and name.

The extension template contains an example of operator documentation.
The XMLle is placed in the folder NAME.example_group (see Figure 7.1), where
’NAME’ is the extension name. You should create one folder, called
NAME.group_name, per operator group, and add one XML le per operator to
the respective group folder.

In this example, the folder is named mytest.operator_test, because the ex-
tension name is ’MyTest’ and the group ID is ’operator_test’. The le is called
my_own_operator.xml, because the operator key is ’my_own_operator’.

47



7. Providing Operator Documentation

Figure 7.1: Example folder with operator documentation

Now, copy the sample le content and adapt it to your needs:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="../../../../../
rapidminerreferencemanual/documentation2html.xsl"?>
<p1:documents xmlns:p1="http://rapid-i.com/schemas/

documentation/reference/1.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://rapid-i.com/schemas/
documentation/reference/1.0 ">

<operator key="operator.mytest:my_own_operator" locale="en"
version="6.5.000">

<title>My own operator</title>
<synopsis>This is an example Operator.

It writes to the Log View when being executed.
</synopsis>
<text>

<paragraph>First paragraph.</paragraph>
<paragraph>Second paragraph.</paragraph>

</text>
<inputPorts>

<port name="input" type="com.rapidminer.example.ExampleSet">
Input port description.

48



</port>
</inputPorts>
<outputPorts>

<port name="output" type="com.rapidminer.example.ExampleSet">
Output port description.

</port>
</outputPorts>

<!-- description of the parameters and the corresponding values -->
<parameters>

<parameter key="log_text" type="string">
Description here

</parameter>
</parameters>

<tutorialProcesses>
<tutorialProcess key="log.test"
title="Logging custom text">

<description>
<paragraph>

Tutorial description here.
</paragraph>

</description>
<process version="6.5.000">

...
</process>

</tutorialProcess>
</tutorialProcesses>

<relatedDocuments>
<!-- ... -->

</relatedDocuments>
</operator>

</p1:documents>

49



7. Providing Operator Documentation

Change the content between the tags to describe your operator, ports and
parameters.

Don’t forget to adapt the operator key in this document. Otherwise, your
operator icon will not display correctly in the operator help.

You can add a tutorial process. To do so, complete the tutorial description
and exchange the process tagswith the process XML of your tutorial process.

How to extract a process XML

1. Build the RapidMiner process that you want to add to the documenta-
tion.

2. Then, open the View > Show Panel > XML menu. The XML panel
opens.

3. Move the XML panel to a comfortable place in RapidMiner Studio. You
can see the process in XML format in the panel.

4. Copy the complete XML code to extract the process.

Congratulations for your rst complete operator, repeat chapters 4 through
7 of this guide for each operator that you want included in your extension.

Then, publish your extension if you want to provide it to the Community
or check out which advanced enhancements you can build for RapidMiner
Studio.

50



CHAPTER8

Publishing Your Own Extension

The RapidMiner Marketplace provides many extensions, developed by both
RapidMiner and other contributers. To publish your extension, log into the
Marketplace (see Figure 8.1).

Click the Login button on the top to login. If you don’t have an account, click
Create new account. Fill in the elds of the sign up form and click at Create
new account again (see Figure 8.2).

You will receive an email with an activation link (see Figure 8.3).

Click the activation link to nish the sign up. Then, check out the options
you have in the RapidMiner Marketplace. You can use bookmarks for faster
access to extensions that you are interested in. You can search and learn
about new extensions. And, most importantly for this document, you can
publish your own extension. To publish, click on the Contact us link at the

51



8. Publishing Your Own Extension

Figure 8.1: RapidMiner Marketplace

bottom (see Figure 8.4).

Once clicked, a request form opens (see Figure 8.5). In it, you can add in-
formation about your extension such as a name, a description, the develop-
ment stage and more.

When the form is complete, click Submit Request.

When received, RapidMiner will check the request and create a product page
for your extension. Youwill be informed by email as soon as it is ready. Once
this is done, you can administer your product and upload the rst version.

Then, nd theMy products menu (see Figure 8.6) and open it. Click on the
product to change the product name, dene the extension category, write a
short description and upload a new package for this product. This is also the

52



Figure 8.2: RapidMiner Marketplace - Creating a new account

Figure 8.3: RapidMiner Marketplace - successful creation of an account

place to upload the rst version of the JAR le of your own extension.

Now other users can download and use your extension. Congratulations!

53



8. Publishing Your Own Extension

Figure 8.4: Marketplace - Sharing your extension

54



Figure 8.5: RapidMiner Marketplace - Request form for publishing your
extension

Figure 8.6: RapidMiner Marketplace - menu bar with ‘My products’ menu

55





CHAPTER9

Advanced Enhancements

If simple operators do not t your needs, there are several more advanced
possibilities to enhance RapidMiner Studio. Learn how to use the PluginInit
class to change some of RapidMiner’s behavior during startup, before any
operator is executed, and how to:

• build a super operator

• create your own data objects

• make custom congurators

• create custom graphical elements

57



9. Advanced Enhancements

9.1 The PluginInit class

The class oers hooks for changing RapidMiner’s behavior during startup.
RapidMiner automatically creates the class PluginInit when you initialize
your extension. It does not have to extend any super class, since its methods
are accessed via reection. There are four methods that are called during
startup of RapidMiner. The following might be interesting for you:

public static void initPlugin()

The initPluginmethod is called directly after the extension is initialized. It is
the rst hook during start up. No initialization of the operators or renderers
has taken place when this is called.

public static void initGui(MainFrame mainframe)

The initGui method, called before the GUI of the mainframe is created, is
called during start up as the second hook. The MainFrame is passed as an
argument to register GUI elements, while the operators and renderers are
registered.

public static void initFinalChecks()

initFinalChecks is the last hook before the splash screen closes.

If you install your extension on RapidMiner Server, the only method called
during startup is initPlugin.

9.2 Creating Super Operators

There are two types of operators in RapidMiner - normal and super opera-
tors. Super operators contain one or more sub processes. You started by

58



9.2. Creating Super Operators

implementing a normal operator, but sometimes an operator relies on the
execution of other operators. And sometimes these operators should be
user dened. Take the cross-validation as an example. The user might spec-
ify the learner and the way performance is measured; it then executes these
subprocesses as needed.

Assume you have an operator that should loop over values, but the Loop
values operator in RapidMiner Studio loops over the values of an attribute.
You want an operator that loops over values in a given range, with a given
step size, and you don’t want to create an attribute for this purpose. Instead,
build a super operator that re-executes its inner operators for each step of a
given range. To do this, create a new class, but this time extend theOperator-
Chain class. As with a simple operator, you must implement a constructor.
The empty class looks like this:

public class LoopValuesRange extends OperatorChain{

public LoopValuesRange(OperatorDescription description) {
super(description, "Executed Process");

}
}

In contrast to the simple operator, you must give the super constructor the
names of the subprocesses you are going to create inside your super opera-
tor. The number of names you pass to the super constructor determines the
number of created subprocesses. If you want to follow the naming conven-
tion, start each word uppercase and use blanks to separate words. Later,
you might access these subprocesses by index to execute them. But rst,
dene some ports to pass data to the super operator.

9.2.1 Using the PortPairExtender for super operators

You learned earlier how to use the PortPairExtender to create throughput
ports for a simple operator. You also need this class to pass data from the

59



9. Advanced Enhancements

super operator to the subprocess and back. Do it in a general way so that
the user can pass any number and any type of object to the inner process.
Youmight know this behavior from the Loop operator of RapidMiner Studio.
The code for adding this PortPairExtender looks like this:

private final PortPairExtender inputPortPairExtender =
new PortPairExtender("input", getInputPorts(), getSubprocess(0)

.getInnerSources());

In addition to the PortPairExtender, there is also a PortExtender. Use the Port-
PairExtender to get an equal number of input and output ports. Take a close
look at the PortPairExtender constructor. In addition to the name, you must
specify which input ports the extender should attach to. The getInputPorts
method delivers the input ports of the current operator (so the port exten-
der is attached on the left side of the operator box). The paired ports are
added to the inner sources of the rst subprocess. Then, you can access the
subprocesses via the getSubprocessmethod.

If you are familiar with RapidMiner’s integrated super operators like Loop,
you know that there are always input ports on the left and output ports on
the right of the subprocess. To distinguish these ports from the input and
output ports of the super operator, RapidMiner calls them inner sources and
inner sinks. In fact, an inner source is technically an output port for the super
operator (because it delivers data to this port). The inner sink is an input port
for the super operator from where it can retrieve the output of the subpro-
cesses. To deliver outputs from the loop, you could add the following second
variant of the PortPairExtender to collect the outputs from all iterations and
pass them as a collection to the output of our super operator:

private final CollectingPortPairExtender outExtender =
new CollectingPortPairExtender(
"output", getSubprocess(0).getInnerSinks(), getOutputPorts());

This would result in an operator that looks like this:

60



9.2. Creating Super Operators

Figure 9.1: Super operator

Tomake a PortExtender work, youmust initialize it during construction of the
operator. Simply add the following lines in the constructor:

inputPortPairExtender.start();
outExtender.start();

To have proper meta data available at the output ports, add some rules:

getTransformer().addRule(inputPortPairExtender
.makePassThroughRule());

You must add a rule dening when the subprocess’ meta data is to be trans-
formed. The ordering of the rule denition is crucial because if themeta data
isn’t forwarded to the inner ports, there is nothing the meta data transfor-
mation of the inner operators can do. This line adds the rule:

getTransformer().addRule(new SubprocessTransformRule(
getSubprocess(0)));

Next, you need a rule to pass themeta data from the inner sinks to the output
ports:

getTransformer().addRule(outExtender.makePassThroughRule());

61



9. Advanced Enhancements

The minimal setup of the doWork()method looks like this:

@Override
public void doWork() throws OperatorException {

outExtender.reset();
inputPortPairExtender.passDataThrough();
getSubprocess(0).execute();
outExtender.collect();

}

First, it resets the CollectingPortPairExtender, then it passes data from the in-
put port of the super operator to the inner ports. Next, execute the subpro-
cess and nally collect all outputs.

Try this instead. Add four parameters - the start value, the end value, the step
size for the range, and a eld where you can enter the macro name (which
contains the current value during the execution of the loop). Then, adapt
the doWork() method. Loop over the values in the given range, dene the
macro value in each iteration and execute the subprocess in each iteration.
The nal result looks like this:

Figure 9.2: Super operator with parameters

You can see that the operator now has the parameters that dene the value
range of the loop. Within the subprocess you can read the macro value (the

62



9.2. Creating Super Operators

current value in the loop) and print it with the rst simple operator that you
created at the beginning.

Figure 9.3: Super operator’s subprocess

The log entries show that, in each iteration, the value of the macro changes
and the subprocess is executed.

63



9. Advanced Enhancements

Figure 9.4: Super operator log entries

64



9.2. Creating Super Operators

In the end, the code of the super operator looks like this:

/**
* Example for a super operator, loops over values given
* by a range and step size.
*/

public class LoopValuesRange extends OperatorChain{

public static final String PARAMETER_START = "start";
public static final String PARAMETER_END = "end";
public static final String PARAMETER_STEP_SIZE = "step size";
public static final String PARAMETER_MACRO_NAME =

"iteration macro";

private final PortPairExtender inputPortPairExtender =
new PortPairExtender("input", getInputPorts(),

getSubprocess(0).getInnerSources());

private final CollectingPortPairExtender outExtender =
new CollectingPortPairExtender("output",

getSubprocess(0).getInnerSinks(), getOutputPorts());

/**
* Constructor
* @param description
*/
public LoopValuesRange(OperatorDescription description) {

super(description, "Executed Process");
inputPortPairExtender.start();
outExtender.start();

getTransformer().addRule(inputPortPairExtender
.makePassThroughRule());

getTransformer().addRule(new SubprocessTransformRule(

65



9. Advanced Enhancements

getSubprocess(0)));
getTransformer().addRule(outExtender

.makePassThroughRule());

}

@Override
public void doWork() throws OperatorException {

outExtender.reset();
inputPortPairExtender.passDataThrough();

double start= getParameterAsDouble(PARAMETER_START);
double end= getParameterAsDouble(PARAMETER_END);
double stepsize= getParameterAsDouble(

PARAMETER_STEP_SIZE);
String macro= getParameterAsString(PARAMETER_MACRO_NAME);

for(double i=start; i<end; i+=stepsize){

getProcess().getMacroHandler().addMacro(macro,
Double.toString(Math.round(i*100)/100.0));

getSubprocess(0).execute();
}
outExtender.collect();

}

@Override
public List<ParameterType> getParameterTypes() {

List<ParameterType> types = super.getParameterTypes();

types.add(new ParameterTypeDouble(PARAMETER_START,
"start value of the value range",
Integer.MIN_VALUE, Integer.MAX_VALUE, 0, false));

66



9.3. Adding Your Own Data Objects

types.add(new ParameterTypeDouble(PARAMETER_END,
"end value of the value range",
Integer.MIN_VALUE, Integer.MAX_VALUE, 1, false));

types.add(new ParameterTypeDouble(PARAMETER_STEP_SIZE,
"step size of the value range",
0, Integer.MAX_VALUE, 0.1, false));

types.add(new ParameterTypeString(PARAMETER_MACRO_NAME,
"This parameter specifies the name"+
" of the macro which holds the current value "+
"of the selected range in each iteration.",
"loop_value"));

return types;
}

}

9.3 Adding Your Own Data Objects

You might nd that the standard data objects don’t full all your require-
ments. For example, maybe you are going to analyze data recorded from a
game engine. The format of the original data can’t directly be expressed as
a table. Although you could write a single operator that reads in data from a
le and does all the translation and feature extraction, you may decide, that
it’s best to split the task. Instead, create multiple operators - one that can
handle the new data object and one that extracts part of the data as exam-
ple set. With thismodularity, it is much easier to extend themechanism later
on and optimize steps separately.

67



9. Advanced Enhancements

9.3.1 Defining the object class

First, you must dene a new class that holds the information you need. This
class implements the interface IOObject, but it is best to extend
ResultObjectAdapter instead. The abstract class has already implemented
much of the non-special functionality and is suitable for the most cases. In
special circumstances, when you already have a class that might hold the
data and provide some important functionality, it might be better to extend
this class and let it implement the interface. An empty implementationwould
look like:

import com.rapidminer.operator.ResultObjectAdapter;

public class DemoDataIOObject extends ResultObjectAdapter {

private static final long serialVersionUID = 1725159059345L;
}

The above is only an empty object that doesn’t hold any information. Now,
add some content:

import com.rapidminer.operator.ResultObjectAdapter;

public class DemoDataIOObject extends ResultObjectAdapter {

private static final long serialVersionUID = 1725159059345L;

private DemoData data;

public DemoDataIOObject(DemoData data) {
this.data = data;

}

public DemoData getDemoData() {

68



9.3. Adding Your Own Data Objects

return data;
}

}

This class gives access to an object of the class DemoData, which is the repre-
sentative for everything you want to access. While it might be more complex
to implement in real-world applications, this example helps to illustrate how
things work in general. You want to extract attribute values from the demo
data, which an operator can then store in a table. You need a mechanism to
add data to the IOObject. (For simplicity, assume you only have numerical
attributes to save the eort of remembering the correct types of the data.)
Add a map for storing the values with identier as a local variable:

private Map<String, Double> valueMap = new HashMap<String, Double>();

Then we extend the DemoDataIOObject with two methods for accessing the
map:

public void setValue(String identifier, double value) {
valueMap.put(identifier, value);

}

public Map<String, Double> getValueMap() {
return valueMap;

}

9.3.2 Configuration

To make your data object accessible, adapt the le ioobjectsNAME.xml (in
the resources folder), which contains some examples of how to dene your
IOObject. This is how the DemoDataIOObject is dened:

<ioobjects>

69



9. Advanced Enhancements

<ioobject
name="DemoData"
class="com.rapidminer.operator.demo.DemoDataIOObject"
reportable="false">
<renderer>com.rapidminer.gui.renderer.DefaultTextRenderer
</renderer>

</ioobject>
</ioobjects>

The renderer is a simple text renderer, which calls the toString() method
of your IOObject to display the object in the Results perspective.

Similarly to operators, you can also give your own data objects a color. The
connection between two operators that exchange your data object will be
colored in the assigned color. To control colors, change the le
groupsNAME.properties in the resources folder to add a line dening the
color:

# IOObjects
io.com.rapidminer.operator.demo.DemoDataIOObject.color = #28C68C

9.3.3 Processing your own IOObjects

Using these methods, you can now implement your rst operator, which ex-
tracts values of the DemoData.

import java.util.List;
import com.rapidminer.operator.Operator;
import com.rapidminer.operator.OperatorDescription;
import com.rapidminer.operator.OperatorException;
import com.rapidminer.operator.ports.OutputPort;

/**

70



9.3. Adding Your Own Data Objects

* Operator that generates {@link DemoData}
*/

public class GenerateDemoDataOperator extends Operator {

private OutputPort outputPortDemoData =
getOutputPorts().createPort("demo data");

/**
* Operator to create {@link DemoData}
*
* @param description
* of the operator
*/

public GenerateDemoDataOperator(OperatorDescription description)
{

super(description);
getTransformer().addGenerationRule(outputPortDemoData,

DemoDataIOObject.class);
}

@Override
public void doWork() throws OperatorException {

DemoDataIOObject ioobject = new DemoDataIOObject(
new DemoData());

List<Double> values = ioobject.getDemoData().getValues();
for (int i = 0; i < values.size(); i++) {

ioobject.setValue("" + (i + 1), values.get(i));
}
outputPortDemoData.deliver(ioobject);

}
}

The example fetches the values from the DemoData object and sets the values

71



9. Advanced Enhancements

of the IOObject. Then, the output port delivers the DemoDataIOObject.

Of course, it’s possible to build more complex constructions. You might, for
example, use one super operator that handles your DemoData with dierent
inner operators. You could build operators that get DemoData as input and
transform them to an example set. Everymethod of treating your own IOOb-
jects is possible by combining what we have learned.

9.3.4 Looking into your IOObject

When building a process for your IOObjects, it’s an excellent idea to set
breakpoints with the process and take a look at what’s contained in the ob-
jects. To continue with the example above, it would be interesting to see
which values have been extracted. If you set a breakpoint, RapidMiner will
display the result of the toStringmethod as the default fallback.

There is plenty of space you could ll with information about the object.
How can you do this? The simplest approach is to override the toString
methodof the IOObject. However, it is better to override the toResultString
method, which, by default, only calls the toStringmethod.

Although text output has its advantages, writing Courier characters to the
screen is a bit outdated. How do you add nice representations to the output
as is done with nearly all core RapidMiner IOObjects?

RapidMiner uses a renderer concept for displaying the various types of
IOObjects. So, you should implement a renderer for your DemoDataIOObject.

You must implement the Renderer interface for this purpose. Extend the
AbstractRenderer, which has most of the methods already implemented.
Most of the methods are used for handling parameters, since renderers
might have parameters, just as operators do. They are used during auto-
matic object reporting and control the output. The handling of these param-
eters and their values is done by the abstract class, you just need to take their
values into account when rendering. Here are the methods to implement:

72



9.3. Adding Your Own Data Objects

import java.awt.Component;
import com.rapidminer.gui.renderer.AbstractRenderer;
import com.rapidminer.operator.IOContainer;
import com.rapidminer.report.Reportable;

public class DemoDataRenderer extends AbstractRenderer {

@Override
public String getName() {

return "DemoData";
}

@Override
public Component getVisualizationComponent(Object renderable,

IOContainer ioContainer) {
// TODO Auto-generated method stub
return null;

}

@Override
public Reportable createReportable(Object renderable, IOContainer

ioContainer, int desiredWidth, int desiredHeight) {
// TODO Auto-generated method stub
return null;

}
}

The rst method must return an object of a class implementing one of the
sub interfaces of Reportable, but this should not be handled here. For an
example, look at the interfaces and some of the implementations in the core.

The second method returns an arbitrary Java component used for display-
ing content in Swing. While there is great exibility, because you want to see
the values as a table, render it as such. You don’t have to implement every-
thing yourself, though. You can use a subclass of the AbstractRenderer - the

73



9. Advanced Enhancements

AbstractTableModelTableRenderer. As the name indicates, it shows a table
based upon a table model. All you need to do is to return this table model:

import java.util.ArrayList;
import java.util.List;
import javax.swing.table.AbstractTableModel;
import javax.swing.table.DefaultTableModel;
import javax.swing.table.TableModel;
import com.rapidminer.gui.renderer.AbstractTableModelTableRenderer;
import com.rapidminer.operator.IOContainer;
import com.rapidminer.operator.demo.DemoDataIOObject;
import com.rapidminer.tools.container.Pair;

public class NewDemoDataRenderer extends
AbstractTableModelTableRenderer {

@Override
public String getName() {

return "DemoData";
}

@Override
public TableModel getTableModel(Object renderable,

IOContainer ioContainer, boolean isReporting) {
if (renderable instanceof DemoDataIOObject) {

DemoDataIOObject object = (DemoDataIOObject)
renderable;

final List<Pair<String, Double>> values =
new ArrayList<>();

for (String key : object.getValueMap().keySet()) {
values.add(new Pair<String, Double>(key,

object.getValueMap().get(key)));
}

74



9.3. Adding Your Own Data Objects

return new AbstractTableModel() {

private static final long serialVersionUID = 1L;

@Override
public int getColumnCount() {

return 2;
}

@Override
public String getColumnName(int column) {

if (column == 0) {
return "Id";

}
return "Value";

}

@Override
public int getRowCount() {

return values.size();
}

@Override
public Object getValueAt(int rowIndex,

int columnIndex) {
Pair<String, Double> pair =

values.get(rowIndex);
if (columnIndex == 0) {

return pair.getFirst();
}
return pair.getSecond();

}
};

}

75



9. Advanced Enhancements

return new DefaultTableModel();
}

}

There are other convenience methods in the
AbstractTableModelTableRenderer for changing the appearance of the ta-
ble. For example, the following methods change the behavior of the table by
enabling or disabling certain features:

@Override
public boolean isSortable() {

return true;
}

@Override
public boolean isAutoresize() {

return false;
}

@Override
public boolean isColumnMovable() {

return true;
}

To use the new renderer, youmust change the le ioobjectsNAME.xml in the
resources folder again. Just add the renderer before the default renderer:

<ioobjects>
<ioobject

name="DemoData"
class="com.rapidminer.operator.demo.DemoDataIOObject"
reportable="false">
<renderer>com.rapidminer.gui.renderer.demo.DemoDataRenderer
</renderer>

76



9.4. Creating Custom Congurators

<renderer>com.rapidminer.gui.renderer.DefaultTextRenderer
</renderer>

</ioobject>
</ioobjects>

You can now see the result of your eorts in building a table representation
of the DemoData values.

9.4 Creating Custom Configurators

Imagine that you want to create a RapidMiner extension that oers an oper-
ator for reading data from a CRM system. Your operator needs the informa-
tion for accessing the CRM, such as a URL, a user name, or a password. One
approach is to add text elds to the parameters of the operator and let the
user type in the required information. Though this may seem convenient,

77



9. Advanced Enhancements

it gets quite redundant if you want to use the same information in other
RapidMiner processes or operators, since you would have to enter the in-
formation multiple times. Alternatively, you can dene the CRM connection
globally and let the user select which CRM to get data from.

This is a scenario where Configurators come in handy. A congurator glob-
ally manages items of a certain type globally and allows you to create, edit
and delete them through a custom conguration dialog. For this example,
we will implement a congurator for CRM entries that allows us to automat-
ically congure those entries using a dialog accessible through the Connec-
tionsmenu. Moreover, a congurator can be used along with a drop-down
list, which allows the user to easily select a connection via a parameter of
your operator.

9.4.1 Usage

In order to implement your own congurator, you need to know the follow-
ing classes:

• Configurable is an item that can be modied through a Configurator.

• Configurator instantiates and congures subclasses of Configurable.

• ConfigurationManager is used to register Configurators in RapidMiner.

• ParameterTypeConfigurable is a ParameterType that creates a drop-
down list for congurators and can be used in the parameter settings
of operators.

First, create a new class describing a single CRM connection entry, which
implements the Configurable interface. Best practice is to extend Abstract-
Configurable instead, because by doing so, you avoid dealing with parameter
values. Then, you don’t have to write code that deals with the actual cong-
uration:

78



9.4. Creating Custom Congurators

public class CRMConfigurable extends AbstractConfigurable {

@Override
public String getTypeId() {

return "CRM";
}

/** Actual business logic of this configurable */
public CRMConnection connect() {

String username = getParameter("user name");
String url = getParameter("URL");
URLConnection con = new URL(url).openConnection();
// ...
// do something with the connection

}
}

Next, we have to extend the AbstractConfigurator class. Each congurator
has a unique typeId, a String in order to identify the congurator in Rapid-
Miner and an I18NBaseKey which will be used as the base key for retrieving
localized information from the resource le. Also, we want to add some Pa-
rameterTypes to our Congurator, because they specify how an entry can be
edited through the conguration dialog. In our example, we need Parameter
Types describing theURL, the user name and passwordwhich should be used
for the CRM connection. For that matter, you would simply have to over-
write the getParameterTypes method and add a new ParameterTypeString,
as shown in the following implementation:

public class CRMConfigurator
extends AbstractConfigurator<CRMConfigurable> {

@Override
public Class<CRMConfigurable> getConfigurableClass() {

return CRMConfigurable.class;

79



9. Advanced Enhancements

}

@Override
public String getI18NBaseKey() {

return "crmconfig";
}

@Override
public List<ParameterType> getParameterTypes(

ParameterHandler parameterHandler) {

List<ParameterType> parameters =
new ArrayList<ParameterType>();

parameters.add(new ParameterTypeString("URL",
"The URL to connect to", false));

parameters.add(new ParameterTypeString("Username",
"The user name for the CRM", false));

parameters.add(new ParameterTypePassword("Password",
"The password for the CRM"));

return parameters;
}

@Override
public String getTypeId() {

return "CRM";
}

}

In addition to the methods getTypeId, getI18NBaseKey and
getParameterTypes, you must also implement the method
getConfigurableClass, which simply returns the used Congurable imple-
mentation class (in this case, the class CRMConfigurable).

Next, add localized information to the resource le GUIXXX.xml, where ’XXX’
is the extension name.

80



9.4. Creating Custom Congurators

gui.configurable.crmconfig.name = CRM Connection
gui.configurable.crmconfig.description = An entry describing a

CRM connection.
gui.configurable.crmconfig.icon = data.png

To get access to the new congurator, register it in the ConfigurationManager.
This step is important because it let’s RapidMiner know of the new congu-
rator so that the CRM operator and other parts of RapidMiner can access it.
To do this, simply call the registermethod within the initialization procedure.
This should be done in the initPluginmethod of the PluginInit class:

public static void initPlugin() {
ConfigurationManager.getInstance().register(

new CRMConfigurator());
}

You can now open the Manage Connections dialog (see Figure 9.5) in the
Connectionsmenu and create a CRM connection.

Now, use the connection as a parameter of an operator (see Figure 9.6) that
connects to the CRM. To do so, override the method getParameterTypes and
add
ParameterTypeConfigurable:

@Override
public List<ParameterType> getParameterTypes() {

List<ParameterType> types = super.getParameterTypes();
ParameterType type = new ParameterTypeConfigurable(

PARAMETER_CONFIG, "Choose a CRM connection", "CRM");
types.add(type);
return types;

}

You have now successfully created your own congurator and can use it to
congure CRM entries for your operator.

81



9. Advanced Enhancements

Figure 9.5: Manage connections dialog

Figure 9.6: Parameter View with Congurable as parameter.

82



9.5. Adding Custom User Interface Elements

9.5 Adding Custom User Interface Elements

Learn how to add custom panels to the UI of RapidMiner Studio, how to use
custom actions, and how to modify the Preferences dialog to your needs.

9.5.1 Adding custom panels

The PluginInit class oers the ability to modify the GUI. We will add a single
new window here for demonstration purpose. All we have to do is to im-
plement a new class implementing the Dockable interface and a component
that is delivered by the Dockable.

public class SimpleWindow extends JPanel implements Dockable {

private static final long serialVersionUID = 1L;
private static final DockKey DOCK_KEY = new ResourceDockKey(

"tutorial.simple_window");
private JLabel label = new JLabel("Hello user.");

/**
* Constructor for a {@link SimpleWindow}.
*/

public SimpleWindow() {
// adding content to this window
setLayout(new BorderLayout());
add(label, BorderLayout.CENTER);

}

/**
* Sets the simple window label
*
* @param labelText
* the text to show

83



9. Advanced Enhancements

*/
public void setLabel(String labelText) {

this.label.setText(labelText);
System.out.println(labelText);
revalidate();

}

@Override
public Component getComponent() {

return this;
}

@Override
public DockKey getDockKey() {

return DOCK_KEY;
}

}

While the content of the window is rather simple and only a variant of the
well-known ’Hello world’ program, it illustrates the concept of the
ResourceDockKey. A DockKey contains information about a Dockable, for ex-
ample it stores the name and the icon of the window. The ResourceDockKey
retrieves this information from the GUI resource bundle that is loaded in a
language dependent manner from the resource le GUIXXX.xml where ’XXX’
is the extension name. The following is an example of what might describe
the new window:

gui.dockkey.tutorial.simple_window.name = A simple Window
gui.dockkey.tutorial.simple_window.icon = window2.png
gui.dockkey.tutorial.simple_window.tip = Take a look at what

RapidMiner has to say.

In the example, the icon window2.png has been added to the folder icons/16
in the resources folder of your extension, making it available when starting

84



9.5. Adding Custom User Interface Elements

RapidMiner. The nal task before seeing the new window is to register it at
RapidMiner’s MainFrame. You want to do this independent of operator exe-
cution, and in fact, want to have the window before any process is executed.
To do so, use one of the PluginInit hooks, so we are going to ll the initGui
method:

public static void initGui(MainFrame mainframe) {
mainframe.getDockingDesktop().registerDockable(

new SimpleWindow(););
}

That’s it! You can now select the new panel from the View > Show Panel
menu. The result looks like this:

9.5.2 Adding custom settings to the Preferences dialog

Open the Settings > Preferencesmenu and look at the existing preferences
dialog. As you can see, there are several tabs that contain specic settings
that the user can make. For your extension, you can create your own tab.

Complete these three steps to build your own tab in the Preferences dialog:

85



9. Advanced Enhancements

1. Adapt the le settingsNAME.xml, where ’NAME’ is the name of your ex-
tension. Then, specify keys for the tab name and the single preferences
you want to add. For example:

<?xml version="1.0" encoding="UTF-8"?>
<settings>

<group key="extension_name">
<property key="extension_name.url" />

</group>
</settings>

2. Adapt thele SettingsNAME.properties, where ’NAME’ is again the name
of your extension. Specify names for the keys that you dened in the
rst step.

extension_name.title = My Extension
extension_name.description =

extension_name.url.title = A Server URL
extension_name.url.description = Default value of a server URL

3. Change themethod initPlugin() in your PluginInit class and register
the settings that you want to add to the Preferences dialog.

public static void initPlugin() {

ParameterService.registerParameter(
new ParameterTypeString(

"extension_name.url", "The server URL",
"http://localhost:8080"));

}

If you want to use a boolean setting (a check box), register it like this:

ParameterService.registerParameter(
new ParameterTypeBoolean("extension_name.url","Use a URL?", false));

86





Global leader in predictve analytcs sofware.
Boson | London | Dormund | Budapes
www.rapidminer.com


