RapidMiner Radoop 7

Operator Reference Manual

@))) rapidminer

RapidMiner Radoop 7

Operator Reference Manual

August 15, 2016

RapidMiner GmbH
www.rapidminer.com

© 2016 by RapidMiner GmbH. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of RapidMiner GmbH.

Contents

1

Radoop Nest i i i e e e e e e e e

Data Access

1.1

1.2

1.3

Hive

Read

Write

AppendintoHive. e
Retrieve fromHive e
StoreinHive e

Read CSV e
Read Database i i i it e e e

Blending
2.1 Attributes .

2.2

2.3

2.1.1

2.1.2

2.1.3

2.1.4

2.2.1

2.2.2

2.2.3

Table
2.3.1

2.3.2

Reord
Name

er Attributes
sandRoles

Rename L e
Rename by Generic Names i i i it
RenamebyReplacing
SetRole e e e

Types

Nominal to Numerical
Type CONVersion v v v i ittt e et e e e e e e
Selection e e e e e
Select Attributes e .
Select Random Attributes
Generation e e e e e e e e e
Generate Attributes e
Generate Copy .« v v v v v e e e e e e e e e e e e e e e e e
GenerateID e e e e e e e
GenerateRank e
Examples .

Filter
Filter
Filter

ExampleRange
Examples e e

Sampling e e e
Sample e e e e e e
SplitData o e e e e e e

Sort

GIoUPING . . . ¢ o o i e

Aggregate L L e e e e e e e e e e e e e e e
Rotation. o e e e

—_
— O VOO UTWLWW KWW

12
12
13

15
15
15
16
16
17
19
21
22
22
24
25
25
27
28
28
35
36
37
38
38
38
39
41
41
43

45
45
45
47
47

Contents

5

6

7

VI

2.3.3 JOINS . . v o e e e e e e e e e e e e 48

Join e e e e e e e e e e e e e 48

Uniono e e e e e e e e e e 49

24 Values e e e e e e e e e 50
AdANOISe o o o e e e e e e 50

Remap Binominals 52

Replace e e e 54

Cleansing 57
3.1 Normalization it e e e 57
Normalize e e e e 57

3.2 MiSSING e e e e e e e 59
Declare MissingValue 59

Replace Missing Values ittt 61

3.3 Duplicates oo e e e e e e e e e e e 63
Remove Duplicates e 63

3.4 DimensionalityReduction 64
Principal Component Analysis 64

Modeling 67
4.1 Predictive o e e e e e e e e 67
CombineModels e 67
DecisionTree o i i i i e e e e e e e e e e e e 68

Decision Tree (MLlib binominal) 70

Linear Regression 72

Logistic Regression it 74
NaiveBayes o e e 76

Random Forest i e e e 78

Support Vector Machine 80

Update Model e 82

4.2 Segmentation e e e e e e e e e e e e e 83
Canopy e e e e e e e e e e e e e 83
FuzzyK-Means e e e e 84

K-Means i i i it e e e e e e e e e e e e e 86

4.3 Correlations i e e e e e e e e e 87
Correlation Matrix o 0 i i e e e e 87

Covariance Matrix v v i i i i i ittt i 88

Scoring 89
ApplyModel e e e 89

Validation 91
Performance (Binominal Classification) 91
Performance (Classification) 93
Performance (Regression) i 95

Split Validation e 97

Utility 99
MaterializeData 99

Multiply e e e e e 101

Subprocess (Radoop)o e e e 102

Contents

7.1

7.2

7.3

7.4

7.5

7.6

Hive . . . e e e e e e 103
CopyHiveTable i 103
DropHive Table i 104
RenameHiveTable. 105

Scripting e e e e e e 106
Hive Script e e e e e e 106
PigScript e e e e 107
Spark Script e e e e 109

Process Control e e e e e e 113
Loop (RadOOp)« o i i e e e e e e e e e e e e 113
Loop Attributes (Radoop) e 115

Local In-Memory Computation 117
In-Memory Subprocess (Full) 117
In-Memory Subprocess (Sample) 119

ProcessPushdown e 121
Single Process Pushdown 121

Random Data Generation vt i, 125
GenerateData 125

VII

Radoop Nest

Radoop Nest

Q inp A=y out D This is the main operator for running processes on Hadoop.

Y-
t

Description

The cluster settings should be provided here and all further Radoop operators can only be used
inside this super-operator.

The subprocess you build inside the nest runs on your Hadoop cluster. You can connect I0Ob-
jects to the input ports, which will be available inside the nest. ExampleSet objects are converted
into HadoopExampleSet objects. The data that is stored in the memory for an ExampleSet is
pushed to the hard disks of the cluster. Hence, data inside the nest is not stored in the memory,
but on the distributed file system. Other IOObjects, like Models are propagated the same way
inside and outside the nest.

You can process the data on your cluster with the Radoop process you build inside the nest.
During execution the process usually starts MapReduce jobs that perform the desired operations
on the data. The output data is also written to the distributed file system. A single job may
complete several operators’ work. Radoop automatically optimizes the process and tries to use
the minimum number of jobs and I/0 operations.

The output ports of the Radoop Nest delivers the IOObjects that you connect to them inside the
nest. HadoopExampleSet objects are converted back to ExampleSet objects. This means, that
the underlying data from the distributed file system is fetched into the client machine’s opera-
tive memory. The ExampleSet in the memory may then be further processed by the remaining
RapidMiner process. You can control the size of the data that is fetched into the memory from
the distributed file system, since you do not want to run out of memory. Hence, you either fetch
a sample of a data set to the memory, or you only connect relatively small data sets to an output
port of the Radoop Nest, like aggregated results that fit into the memory.

Input Ports
input 1 (inp)

Output Ports
output 1 (out)

Parameters
connection Radoop connection

table prefix Table prefix for temporary objects on the cluster to be easily distinguishable from
permanent objects. These objects are automatically deleted after the process completes if
cleaning is set to true. Default value can be changed by a global property.

change sample size Override default output sample size for this subprocess.

sample size Sample size for Hadoop data sets on the Nest output, zero means full sample.

Contents

hive file format Default file format for the created Hive tables
impala file format Default file format for the created Impala tables

reload impala metadata Call invalidate metadata statement on the selected tables or the
whole database if table are not specified. This reloads the metadata in Impala from the
Hive metastore so you can use all Hive tables and views in your process.

tables to reload Call invalidate metadata on certain tables or the whole database if tables are
not specified. You should consider setting this parameter if your database contains a large
number of tables.

cleaning Clean temporary tables after finish

auto convert Push example set input data to the cluster automatically

1 Data Access

1.1 Hive
Append into Hive

Append

Q exa b‘__{ ean

Appends rows of the input data set to a permanent Hive table.
ori

Description

This operator appends the content of the current result set permanently to a Hive table of the
same structure on the cluster. This operation might take a lot of time to run, because it needs
to materialize the input data to append it to a Hive table.

The operator tries to match the attributes of the input data set with the columns of the target
Hive table by their name (names are case-insensitive). The data must fit into the target table, so
the type of the matched attributes/columns must be appropriate (see the RapidMiner and Hive
data type conversion section in the documentation), or the target column must have a string data
type. Otherwise, the operator gives a design time error and throws an error during execution.

The input data set may have further attributes, the operator only deals with those that exists
in the target Hive table. However, the input data set must have all attributes that the target
Hive table has, otherwise an error is thrown. You may change this rule if you set the insert-
_nulls parameter to true. This tells the operator to insert NULL values into the columns that are
missing from the input data set. This decreases the strictness of the schema validation, but it
allows you to add columns to the table later without causing earlier append processes to fail.

You may also insert into a partitioned Hive table. The input data set must contain the parti-
tioning columns (they can not be set to NULL). Dynamic partitioning is performed, so the tar-
get partitions is determined during execution time. You must explicitly enable inserting into a
partitioned table with the partitioning parameter. If this is set to true, you may set the max-
_partitions parameter which is an upper limit for the number of partitions that this operation
inserts into. The purpose of this setting is to protect against inserting into a large number of
partitions, as it may lead to a large overhead. Your Hive server has a default limitation for this. If
you set the operator’s parameter to -1, this default value will be the upper limit. Otherwise, only
the operator’s parameter limits the number of partitions affected during this insert operation.
This parameter has no effect on other operations.

Please note that append by more than one processes at the same time into the same destina-
tion table is not supported, and may lead to unpredictable results.

Input Ports

example set input (exa)

Output Ports

example set output (exa)

1. Data Access

original (ori)

Parameters

use default database Use the database specified in the connection of the Radoop Nest.
database Name of the database being used.

tablename Target Hive table.

create Create table if it does not exist

insert nulls Insert NULL values for missing columns if the target table exists already with fur-
ther columns.

partitioning Enable insert into partitioned table. Dynamic partitioning is performed based on
the target Hive tables’ partitioning columns

max partitions Upper limit for the number of partitions (dynamic partitioning); use -1 to use
Hive’s settings. This is a limit for the different values of the partitioning columns (com-
bined).

1.1. Hive

Retrieve from Hive

Retrieve

OutD Retrieves a Hive table for analysis.

Description

Retrieves the Hive table for further analysis. The data remains on the cluster and Radoop only
loads references, metadata and statistics about the table. It takes the same amount of time to
retrieve a huge table and a small table.

Output Ports
output (out)

Parameters

use default database Use the database specified in the connection of the Radoop Nest.
database Name of the database being used.

table Input table.

filter clause Here you can specify the WHERE clause of the initial query. It is especially useful
ifyou are querying partitioned tables. Only use this if you know exactly what you are doing.

1. Data Access

Store in Hive

Store

Q inp G OutD Stores current Hive view as a permanent Hive table.

%:- ¥

Description

This operator stores a result table permanently on the cluster. It might take a lot of time to
run, because it needs to materialize the data to store as a Hive table, i.e. complete all deferred
calculations to get the data.

You can choose to store the data in a so-called external table . This means that you control
the location (directory) where the files are stored on the distributed file system. When you drop
an external table (e.g. use the Drop Table command on the Hadoop Data view), the data is not
removed. However, if you check the dropfirst parameter in this operator and the target table
already exists, the operator cleans the target directory. Hence, this flag parameter’s behavior is
consistent between normal and external table.

Using the external table option, you can save your data on a different storage system, like
Amazon S3. Use the s3://<bucket>/<path> or s3n://<bucket>/<path> format to specify the
destination directory (it will be created if it does not exist). Please note that in this case the
target directory can not be checked or emptied beforehand, since it can not be accessed directly
without AWS credentials.

Another useful feature is partitioning . You may choose one or more so-called partitioning
columns. Rows with different values in these columns are handled separately by Hive. This
feature is important for enhancing manageability and performance. Data in the different parti-
tions are kept separately. Performance may be radically increased if you filter on the partitioning
columns (use Retrieve operator’s filter clause parameter).

This operator allows dynamic partitioning. This means that the target partition for a row is
determined during execution by the value of the partitioning columns. Dynamic partitioning is
traditionally restricted by Hive, as the user may misuse this easily by using a column for parti-
tioning that has a lot of different values. This causes a large overhead in processing the table
and misses the point of partitioning. Please choose partitioning columns so, that they do not
cause extremely large number partitions because of the large number of different values. You
may explicitly modify the limit for the maximum number of partitions that this store opera-
tion allows using the max_partitions parameter. (This parameter value only limits this dynamic
partitioning operation. For other Hive commands, Hive’s configuration applies). Typical par-
titioning columns are log dates (day or month) or larger area codes (hundreds of partitions at
most). Please note that you should avoid the NULL values in the partitioning columns, as they
may lead to errors in querying the Hive table later. Use Replace Missing Values operator to change
NULL values in any attribute.

The target table is created with the default storage settings defined in you Hive server con-
figuration. You may alter this behavior by setting the custom_storage parameter to true and
changing the storage parameters. You should consult the Hive documentation for the details
and the advantages/disadvantages of these settings.

Input Ports
input (inp)

1.1. Hive

Output Ports
output (out)

Parameters

use default database Use the database specified in the connection of the Radoop Nest.
database Name of the database being used.

tablename Hive table:

dropfirst Forced table creation. For external tables the target directory will be cleaned.
external table Store in external table (specify the location explicitly).

location Location of the external table data: a directory on the HDFS, or S3 (use s3n:// prefix),
etc.

partition by Ordered list of partitioning columns.

max partitions Upper limit for the number of partitions (dynamic partitioning); use -1 to use
Hive’s settings. This is a limit for the different values of the partitioning columns (com-
bined).

custom storage Use custom storage format. You may specify the target table’s storage format
explicitly.

custom storage handler Use a custom storage handler. You specify storage handler class
name explicitly.

storage handler Custom storage handler. It must exist in the CLASSPATH of the Hive server.

row format Target table row format. Please note that older Hive versions may not support all
row format settings.

fields delimiter Custom field delimiter character.

fields escape char Escape character that can be used to escape the field delimiter character.
Leave empty for no escape character. Use \’ for the *\’ character.

collection delimiter Custom delimiter characterthat separates collectionitems (COLLECTION
data type).

map keys delimiter Custom delimiter character that separates map keys (MAP data type).
lines delimiter Custom delimiter character that separates records (lines).

null character Character for storing a NULL value.

serde class name Custom SerDe class name. It must exist in the CLASSPATH of the Hive server.

serde properties Userdefined SerDe parameter. These case sensitive key-value pairs are passed
to the table’s SerDe.

hive file format Target table file format. Please note that older Hive versions may not support
all file format types.

1. Data Access

impala file format Target table file format. Please note that older Impala versions may not
support all file format types.

input format Custom input format class name. It must exist in the CLASSPATH of the Hive
server. Example: ’org.apache.hadoop.hive.contrib.fileformat.base64.Base64TextInputFormat’

output format Custom output format class name. It must exist in the CLASSPATH of the Hive
server. Example: ’org.apache.hadoop.hive.ql.io.HivelgnoreKeyTextOutputFormat’

1.2. Read

1.2 Read
Read CSV

Read CSV

OUtD Reads CSV file and stores it in Hive.

Description

This operator works the same way as the built-in CSV reader, but it loads the data directly to
Hive instead of the memory. Even huge data files can be loaded safely as it has a low memory
footprint. The CSV file may reside on the client’s local file system or on the Hadoop Distributed
File System (HDFES).

Currently, the operator supports three types of import scenarios:

» Import from a local flat file to the Hadoop cluster into a Hive table.
» Import from the distributed file system to a Hive table.
» Import from the distributed file system without copying any data.

In the first scenario a local flat file on the client’s file system is the source. You can define the
columns, specify the column separator, the usage of quote characters etc. After you successfully
configured these settings, you can specify the target Hive table properties. If you want to further
process the data immediately after this operator, you can use a temporary table to store the data.
If you want to permanently store the data in Hive, then you must choose a name for the table
and you may also specify advanced storage settings (partitioning, storage format) for this table.
In case of a permanent table, you can easily access the data later with a Retrieve operator.

The second scenario is when the data already resides on your Hadoop cluster. This is the pre-
ferred scenario if you have a large input data, as streaming a local large file may take a lot of
time. In this case, you must specify the distributed file system (usually HDFS) location of your
source data. This may be a directory, in which case, all non-empty files in it will be imported,
or it can be a single file. You can specify the fields and the separators similarly to the local file
scenario. You also can specify the target storage settings similarly. During process execution,
the operator will start an import job that reads the input directory or file, and writes the content
into the specified Hive table.

The third method is the fastest way to process a data that already resides in the distributed
file system. In this case, you only create a so-called external table in Hive. This means that you
create a table for which you specify the location of the data. When you query this table, Hive will
look up the content in the path you have specified. In this case there is no need for an import job
to be performed, as the data is never copied to another path, it is always read from its current
location. However, you have some limitations in the settings compared to the second scenario.
You can not specify a single file as the source, it must be a directory. You also have fewer options
for defining separators. If you are fine with these limitations, this is the fastest way to access
the content of a flat file on the distributed file system by your process.

Output Ports
output (out)

1. Data Access

Parameters
Configuration Configure the operator with wizard

override file This location string overrides the source path defined using the import wizard.
This is useful e.g. for testing purposes or for using macros in the path.

override location Source location.

10

1.2. Read

Read Database

Read Database

% out D Reads Database table and stores it in Hive.

Description

This operator works the same way as the built-in database reader, but it loads the data directly
to Hive instead of the memory. Even huge data files can be loaded safely as it has a low memory
footprint.

Output Ports
output (out)

Parameters

define connection Indicates how the database connection should be specified.

connection A predefined database connection.

database system The used database system.

database url The URL connection string for the database, e.g. ‘jdbc:mysql://foo.bar:portnr/database’
username The database username.

password The password for the database.

jndi name JNDI name for a data source.

define query Specifies whether the database query should be defined directly, through a file
or implicitely by a given table name.

query An SQL query.

query file A file containing an SQL query.

use default schema If checked, the user’s default schema will be used.
schema name The schema name to use, unless use_default_schema is true.
table name A database table.

prepare statement If checked, the statement is prepared, and ‘?’-parameters can be filled in
using the parameter ‘parameters’.

parameters Parameters to insert into ‘?’ placeholders when statement is prepared.
datamanagement Determines, how the data is represented internally.
temporary table Temporary table

saved table name Table name

11

1. Data Access

1.3 Write

Write CSV
Write CSV
Q inp T thrD
s R Writes CSV file from a Hive table.
fil D
Description

This operator exports an example set on the cluster directly to a CSV file on the client’s local file
system. The data is read and written as a stream, so even huge files can be written safely with a
small memory footprint (as long as there is enough disk space).

Input Ports
input (inp)

Output Ports
through (thr)

file (fil)

Parameters

csv file Name of the file to write the data in.

column separator The column separator.

write attribute names Indicates if the attribute names should be written as first row.
quote nominal values Indicates if nominal values should be quoted with double quotes.

format date attributes Indicates if date attributes are written as a formated string or as mil-
liseconds past since January 1, 1970, 00:00:00 GMT

append to file Indicates if new content should be appended to the file or if the pre-existing
file content should be overwritten.

encoding The encoding used for reading or writing files.

12

1.3. Write

Write Database

Write Database

Q inp %L thrD Writes Database from Hive table.

Description

This operator writes a Hive table directly to database. The data is read and written as a stream,
so even huge files can be written safely with a small memory footprint (as long as there is enough
disk space).

Input Ports

input (inp)

Output Ports
through (thr)

Parameters

define connection Indicates how the database connection should be specified.
connection A predefined database connection.

database system The used database system.

database url The URL connection string for the database, e.g. ‘jdbc:mysql://foo.bar:portnr/database’
username The database username.

password The password for the database.

jndi name JNDI name for a data source.

use default schema If checked, the user’s default schema will be used.
schema name The schema name to use, unless use_default_schema is true.
table name A database table.

overwrite mode Indicates if an existing table should be overwritten or if data should be ap-
pended.

set default varchar length Set varchar columns to default length.
default varchar length Default length of varchar columns.

add generated primary keys Indicates whether a new attribute holding the auto generated
primary keys is added to the result set.

db key attribute name The name of the attribute for the auto generated primary keys

13

1. Data Access

batch size The number of examples which are written at once with one single query to the
database. Larger values can greatly improve the speed - too large values however can dras-
tically decrease the performance. Additionally, some databases have restrictions on the
maximum number of values written at once.

Varchar size Varchar length

14

2 Blending

2.1 Attributes
Reorder Attributes

Reorder Attributes

This operator allows to reorder regular attributes of a HadoopEx-

Q exa (& ean ampleSet. Reordering can be done alphabetically, by user specifi-
q ref & ori D C?ti}o? (including Regular Expressions) or with a reference Exam-
pleSet.

Description

This operator allows to change the ordering of regular attributes of an ExampleSet . Therefore
different order modes may be selected in the parameter sort_ mode . If sort mode alphabeticallyis
chosen attributes are sorted alphabetically according to the selected sort_direction. If sort mode
user specified is chosen the user can specify rules that define how attributes should be ordered.
If sort mode reference data is chosen the input HadoopExampleSet will be sorted according to
the order of reference ExampleSet. Note that special attributes will not be considered by this
operator. If they should be considered set them to regular with Set Role operator.

Input Ports

example set input (exa)

reference data (ref)

Output Ports
example set output (exa)

original (ori)

Parameters

sort mode Ordering method that should be applied.

sort direction Sort direction for attribute names.

attribute ordering Rules to order attributes.

handle unmatched Defines the behavior for unmatched attributes.

use regular expressions If checked attribute orders will be evaluated as regular expressions.

15

2. Blending

2.1.1 Names and Roles
Rename

Rename

Qexa %- ean

This operator can be used to rename an attribute.
ori

Description

This operator can be used to rename an attribute of the input table. Please keep in mind, that
attribute names have to be unique. Please note that all attribute names inside the Radoop Nest
are automatically converted to lowercase, special characters are replaced by underscores and
collision with certain reserved keywords may be avoided by an underscore suffix. You will notice
and easily track these changes during design time by checking the meta data on the output port.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters
old name The old name of the attribute.
new name The new name of the attribute.

rename additional attributes Alistthatcanbe usedtodefine additional attributes that should
be renamed.

16

2.1. Attributes

Rename by Generic Names

Rename by Generic ...

Q exa 1 %L exa D This operator can be used to rename attributes generically with an
= o D incremental index.

Description

This operator can be used to rename attributes of the input table generically. It requires a name
stem which will be followed by an incrementally generated index. Please keep in mind, that
attribute names have to be unique. Please note that all attribute names inside the Radoop Nest
are automatically converted to lowercase, special characters are replaced by underscores and
collision with certain reserved keywords may be avoided by an underscore suffix. You will notice
and easily track these changes during design time by checking the meta data on the output port.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression Aregular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression Aregular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.

block type The block type of the attributes.

17

2. Blending

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

generic name stem The selected attributes will be named by this parameter, followed by an
incremental index.

18

2.1. Attributes

Rename by Replacing

Rename by Replacing

Q exa T F ean This operator can be used to rename attributes. It uses a regular
§ ori D expression to choose involved part(s) of the attribute name.

Description

This operator can be used to replace parts of the chosen attributes’ names. These parts are se-
lected by a regular expression. The replacing text part comes from the replace by parameter,
which might include capturing groups of the defined regular expression as well. These can be
accessed with syntax $1, $2, $3... Please keep in mind, that attribute names have to be unique.
Please note that all attribute names inside the Radoop Nest are automatically converted to low-
ercase, special characters are replaced by underscores and collision with certain reserved key-
words may be avoided by an underscore suffix. You will notice and easily track these changes
during design time by checking the meta data on the output port.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression Aregular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression Aregular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

19

2. Blending

except value type Except this value type.
block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

replace what A regular expression defining what should be replaced in the attribute names.

replace by A replacing text for regular expression matches.

20

2.1. Attributes

Set Role
Set Role
Q exa =L ean This operator can be used to change the attribute role (regular,
$ ori D special, label, id...).
Description

This operator can be used to change the role of an attribute of the input. If you want to change
the attribute name you should use the Rename operator.

The target role indicates if the attribute is a regular attribute (used by learning operators) or
a special attribute (e.g. alabel or id attribute). The following target attribute types are possible:

 regular: only regular attributes are used as input variables for learning tasks
¢ id: the id attribute for the example set

¢ label: target attribute for learning

« prediction: predicted attribute, i.e. the predictions of a learning scheme

e cluster: indicates the membership to a cluster

» weight: indicates the weight of the example

* batch: indicates the membership to an example batch

Users can also define own attribute types by simply using the desired name.

Please be aware that roles have to be unique! Assigning a non regular role the second time will
cause the first attribute to be dropped from the example set. If you want to keep this attribute,
you have to change it’s role first.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters
name The name of the attribute whose role should be changed.

target role The target role of the attribute (only changed if parameter change_attribute_type
is true).

set additional roles This parameter defines additional attribute role combinations.

21

2. Blending

2.1.2 Types
Nominal to Numerical

Nominal to Numerical

G exa I ean
- o D Converts a nominal Hive table attribute and its values to numeri-
cal.

e

Description

This operator converts the type of one or more nominal attributes in the data set to numerical
type. The value of the attribute(s) will also be transformed by the selected coding type method.
Further information about coding types can be found at parameter description.

If dummy coding or effect coding is selected, you can set up a list of comparison groups. The
attribute created from a comparison group will not appear in the output example set.

You can set the maximal number of distinct nominal values. This can be useful in case you
want to avoid creating vast amount of attributes, or long processing time. If the limitation is
exceeded, an error message will arise and process will be stopped.

Input Ports

example set input (exa)

Output Ports
example set output (exa)
original (ori)

preprocessing model (pre)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression Aregular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression Aregular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

22

2.1. Attributes

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.
block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

coding type The coding of the numerical attributes. Unique integers coding simply assigns
an integer value to each distinct nominal values. Dummy coding creates a new attribute
for each distinct value. Within these attributes, it indicates value match with value 1 and
mismatch with value 0. Comparison groups might be set for all attributes. These will not
appear in the output example set. Effect coding works just like dummy coding, but it always
requires a filled up comparison group list, and it sets the value to -1 if the nominal value
corresponds to the comparison group.

use comparison groups If checked, for each selected attribute in the input set a value has to
be specified as comparison group, which will not appear in the final result set.

comparison groups The value which becomes the comparison group.

distinct values limit Maximum number of distinct nominal values in any attribute.

23

2. Blending

Type Conversion

Type Conversion

Gexa % ean

Converts the type of a Hive table attribute.
ori

Description
This operator converts the type of one or more attributes in the data set. Currently it only sup-

ports conversion between integer, double and string.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters
attribute Attribute
new type Type

type conversions List of type conversions.

24

2.1. Attributes

2.1.3 Selection
Select Attributes

Select Attributes

Q exa (& ean This operator allows to select which attributes should be part of
& ori D the resulting table.

Description

This operator selects which attributes of a Hive table should be kept and which are removed.
Therefore, different filter types may be selected in the parameter attribute filter type and only
attributes fulfilling this condition type are selected. The rest will be removed from the table.
There’s a global switch to invert the outcome, so that all attributes which would have been orig-
inally discarded will be kept and vice versa. To invert the decision, use the invert selection pa-
rameter.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression Aregular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression Aregular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.

25

2. Blending

block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

26

2.1. Attributes

Select Random Attributes

Select Random Attri...

Q exa = ean This operator allows to select a random subset of attributes that
§ ori D should be part of the resulting table.

Description

This operator selects a random subset of the regular attributes that should be kept. The double
parameter defines the expected ratio of the selected attributes, it specifies the probability that
an attribute is included. If a low probability value would cause that no regular attribute would
be selected, the operator still adds a randomly selected one to the result data set (if there is any).
You can specify a random seed to get deterministic result.

Special attributes are all kept.

Please note that as the operator cannot predict the result attribute set during design-time, it
simply propagates the metadata on its input port to its output port.

The operator can be of great use inside loops, e.g. for training an ensemble model on different
attribute subsets (like a Random Forest algorithm). For determistic result inside a loop, you
should use the iteration macro as the random seed.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters
filter ration Relative size of the attribute set
use local random seed Indicates if a local random seed should be used.

local random seed Specifies the local random seed

27

2. Blending

2.1.4 Generation
Generate Attributes

Generate Attributes

Q exa [%_ ean This operator constructs new user defined attributes from expres-
= i D sions.

Description

This operator constructs new attributes from the attributes of the input table and arbitrary con-
stants. The attribute names might be used as variables in the expression. The expression can
be any HiveQL (SQL-like) expression. The Hive Expression Editor dialog helps you to construct
a valid expression. Just click on the small calculator icon next to the attribute_expression pa-
rameter textfield. The dialog will open and you can build the expression easily. Below, you find
a list of the operators and functions you can use to build the HiveQL expression.

By default, the operator automatically validates the attribute expressions using the remote
connection to the Hive server during design-time. The meta data on the output port shows pre-
cisely the expected output data types. However, due to the remote connection, this adds some
latency to the Design view, as a change in any operator before the Generate Attributes operator
in the process causes some remote calls to revalidate the attribute expressions. If this latency is
unacceptable for you, uncheck the auto_validate parameter to prevent these automatic remote
calls. In this case, however, this operator cannot predict the types of the generated attributes,
hence, it assumes them to be nominals during design-time. The types can be explicitly defined
easily with the help of a Type Conversion operator that follows this operator and sets the data
types of the generated attributes. The auto_validate parameter has no effect during the process
execution.

Supported Expressions
The following operators and functions are supported:
» ! a- Logical not

e a!=b - Returns TRUE if a is not equal to b

a % b - Returns the remainder when dividing a by b
* a & b - Bitwise and

* a| b - Bitwise or

e n - Bitwise not

e a*b - Multiplies a by b

e a+b-Returns atb

* a- b - Returns the difference a-b

« a/b-Divideabyb

28

2.1. Attributes

a < b - Returns TRUE if a is less than b

a <=b - Returns TRUE if a is not greater than b

a <> b - Returns TRUE if a is not equal to b

a=Db - Returns TRUE if a equals b and false otherwise

a ==b - Returns TRUE if a equals b and false otherwise

a > b - Returns TRUE if a is greater than b

a >=b - Returns TRUE if a is not smaller than b

a ~ b - Bitwise exclusive or

abs(x) - returns the absolute value of x

acos(x) - returns the arc cosine of x if -1<=x<=1 or NULL otherwise
aandb - Logical and

array(n0, nl...) - Creates an array with the given elements
array_contains(array, value) - Returns TRUE if the array contains value.
ascii(str) - returns the numeric value of the first character of str
asin(x) - returns the arc sine of x if -1<=x<=1 or NULL otherwise
assert_true(condition) - Throw an exception if ‘condition’ is not true.
atan(x) - returns the atan (arctan) of x (x is in radians)

avg(x) - Returns the mean of a set of numbers

bin(n) - returns n in binary

binary(a) - cast a to binary

ceil(x) - Find the smallest integer not smaller than x

ceiling(x) - Find the smallest integer not smaller than x
coalesce(al, a2, ...) - Returns the first non-null argument

collect_set(x) - Returns a set of objects with duplicate elements eliminated

concat(strl, str2, ... strN) - returns the concatenation of strl, str2, ... strN or concat(binl,
bin2, ... binN) - returns the concatenation of bytes in binary data binl, bin2, ... binN

concat_ws(separator, strl, str2, ...) - returns the concatenation of the strings separated by

the separator.

context_ngrams(expr, array<stringl, string2, ...>, k, pf) estimates the top-k

most frequent

n-grams that fit into the specified context. The second parameter specifies a string of
words that specify the positions of the n-gram elements, with a null value standing in for

a ‘blank’ that must be filled by an n-gram element.

conv(num, from_base, to_base) - convert num from from_base to to_base

29

2.

Blending

30

corr(x,y) - Returns the Pearson coefficient of correlation between a set of number pairs
cos(x) - returns the cosine of x (x is in radians)

count(*) - Returns the total number of retrieved rows, including rows containing NULL
values. count(expr) - Returns the number of rows for which the supplied expression is
non-NULL. count(DISTINCT expr], expr...]) - Returns the number of rows for which the
supplied expression(s) are unique and non-NULL.

covar_pop(x,y) - Returns the population covariance of a set of number pairs
covar_samp(x,y) - Returns the sample covariance of a set of number pairs
create_union(tag, objl, obj2, obj3, ...) - Creates a union with the object for given tag
date_add(start_date, num_days) - Returns the date that is num_days after start_date.
date_sub(start_date, num_days) - Returns the date that is num_days before start_date.
datediff(datel, date2) - Returns the number of days between datel and date2
day(date) - Returns the date of the month of date

dayofmonth(date) - Returns the date of the month of date

degrees(x) - Converts radians to degrees

a div b - Divide a by b rounded to the long integer

e() -returns E

elt(n, strl, str2, ...) - returns the n-th string

ewah_bitmap(expr) - Returns an EWAH-compressed bitmap representation of a column.

ewah_bitmap_and(bl, b2) - Return an EWAH-compressed bitmap that is the bitwise AND
of two bitmaps.

ewah_bitmap_empty(bitmap) - Predicate that tests whether an EWAH-compressed bitmap
is all zeros

ewah _bitmap or(b1, b2) - Return an EWAH-compressed bitmap that is the bitwise OR of
two bitmaps.

exp(xX) - Returns e to the power of x

explode(a) - separates the elements of array a into multiple rows, or the elements of a map
into multiple rows and columns

field(str, strl, str2, ...) - returns the index of str in the strl,str2,... list or 0 if not found

find_in_set(str,str_array) - Returns the first occurrence of str in str_array where str_array
is a comma-delimited string. Returns null if either argument is null. Returns 0 if the first
argument has any commas.

floor(x) - Find the largest integer not greater than x
from_unixtime(unix_time, format) - returns unix_time in the specified format

get json_object(json_txt, path) - Extract a json object from path

2.1. Attributes

hash(al, a2, ...) - Returns a hash value of the arguments

hex(n or str) - Convert the argument to hexadecimal

histogram_numeric(expr, nb) - Computes a histogram on numeric ’expr’ using nb bins.
hour(date) - Returns the hour of date

test in(vall, val2...) - returns true if test equals any valN

in_file(str, filename) - Returns true if str appears in the file

instr(str, substr) - Returns the index of the first occurance of substr in str

isnotnull a - Returns true if a is not NULL and false otherwise

isnull a - Returns true if a is NULL and false otherwise

json_tuple(jsonStr, p1, p2, ..., pn) - like get json_object, but it takes multiple names and
return a tuple. All the input parameters and output column types are string.

lcase(str) - Returns str with all characters changed to lowercase

length(str | binary) - Returns the length of str or number of bytes in binary data
like(str, pattern) - Checks if str matches pattern

In(x) - Returns the natural logarithm of x

locate(substr, str], pos]) - Returns the position of the first occurance of substr in str after
position pos

log([b], x) - Returns the logarithm of x with base b

log10(x) - Returns the logarithm of x with base 10

log2(x) - Returns the logarithm of x with base 2

lower(str) - Returns str with all characters changed to lowercase

Ipad(str, len, pad) - Returns str, left-padded with pad to a length of len

Itrim(str) - Removes the leading space characters from str

map(key0, value0, key1, valuel...) - Creates a map with the given key/value pairs
map_keys(map) - Returns an unordered array containing the keys of the input map.
map_values(map) - Returns an unordered array containing the values of the input map.
max(expr) - Returns the maximum value of expr

min(expr) - Returns the minimum value of expr

minute(date) - Returns the minute of date

month(date) - Returns the month of date

named_struct(namel, vall, name2, val2, ...) - Creates a struct with the given field names
and values

31

2.

Blending

32

negative a - Returns -a

ngrams(expr, n, k, pf) - Estimates the top-k n-grams in rows that consist of sequences of
strings, represented as arrays of strings, or arrays of arrays of strings. ‘pf’ is an optional
precision factor that controls memory usage.

not a - Logical not
aorb - Logical or
parse_url(url, partToExtract[, key]) - extracts a part from a URL

parse_url tuple(url, partnamel, partname2, ..., partnameN) - extracts N (N>=1) parts from
a URL. It takes a URL and one or multiple partnames, and returns a tuple. All the input
parameters and output column types are string.

percentile(expr, pc) - Returns the percentile(s) of expr at pc (range: [0,1]).pc can be a dou-
ble or double array

percentile_approx(expr, pc, [nb]) - For very large data, computes an approximate percentile
value from a histogram, using the optional argument [nb] as the number of histogram bins
to use. A higher value of nb results in a more accurate approximation, at the cost of higher
memory usage.

pi() - returns pi

a pmod b - Compute the positive modulo

positive a - Returns a

pow(x1, x2) - raise x1 to the power of x2

power(x1, x2) - raise x1 to the power of x2

radians(x) - Converts degrees to radians

rand([seed]) - Returns a pseudorandom number between 0 and 1
reflect(class,method[,arg1[,arg2..]]) calls method with reflection

str regexp regexp - Returns true if str matches regexp and false otherwise
regexp_extract(str, regexp|, idx]) - extracts a group that matches regexp
regexp_replace(str, regexp, rep) - replace all substrings of str that match regexp with rep
repeat(str, n) - repeat str n times

reverse(str) - reverse str

str rlike regexp - Returns true if str matches regexp and false otherwise
round(x], d]) - round x to d decimal places

rpad(str, len, pad) - Returns str, right-padded with pad to a length of len
rtrim(str) - Removes the trailing space characters from str

second(date) - Returns the second of date

2.1. Attributes

sentences(str, lang, country) - Splits str into arrays of sentences, where each sentence is an
array of words. The ‘lang’ and’country’ arguments are optional, and if omitted, the default
locale is used.

sign(x) - returns the sign of x)

sin(x) - returns the sine of X (x is in radians)

size(a) - Returns the size of a

space(n) - returns n spaces

split(str, regex) - Splits str around occurances that match regex

sqrt(x) - returns the square root of x

stack(n, cols...) - turns k columns into n rows of size k/n each

std(x) - Returns the standard deviation of a set of numbers

stddev(x) - Returns the standard deviation of a set of numbers
stddev_pop(x) - Returns the standard deviation of a set of numbers
stddev_samp(x) - Returns the sample standard deviation of a set of numbers
str_to_map(text, delimiter1, delimiter2) - Creates a map by parsing text
struct(coll, col2, col3, ...) - Creates a struct with the given field values

substr(str, pos], len]) - returns the substring of str that starts at pos and is of length len or
substr(bin, pos|, len]) - returns the slice of byte array that starts at pos and is of length len

substring(str, pos|, len]) - returns the substring of str that starts at pos and is of length
len or substring(bin, pos[, len]) - returns the slice of byte array that starts at pos and is of
length len

sum(x) - Returns the sum of a set of numbers

tan(x) - returns the tangent of x (x is in radians)

to_date(expr) - Extracts the date part of the date or datetime expression expr
trim(str) - Removes the leading and trailing space characters from str
ucase(str) - Returns str with all characters changed to uppercase
unhex(str) - Converts hexadecimal argument to string
union_map(col) - aggregate given maps into a single map
unix_timestamp([date[, pattern]]) - Returns the UNIX timestamp
upper(str) - Returns str with all characters changed to uppercase
var_pop(x) - Returns the variance of a set of numbers

var_samp(x) - Returns the sample variance of a set of numbers

variance(x) - Returns the variance of a set of numbers

33

2.

Blending

weekofyear(date) - Returns the week of the year of the given date. A week is considered to
start on a Monday and week 1 is the first week with >3 days.

xpath(xml, xpath) - Returns a string array of values within xml nodes that match the xpath
expression

xpath_boolean(xml, xpath) - Evaluates a boolean xpath expression

xpath_double(xml, xpath) - Returns a double value that matches the xpath expression
xpath_float(xml, xpath) - Returns a float value that matches the xpath expression
xpath_int(xml, xpath) - Returns an integer value that matches the xpath expression
xpath_long(xml, xpath) - Returns a long value that matches the xpath expression
xpath_number(xml, xpath) - Returns a double value that matches the xpath expression
xpath_short(xml, xpath) - Returns a short value that matches the xpath expression

xpath_string(xml, xpath) - Returns the text contents of the first xml node that matches the
xpath expression

year(date) - Returns the year of date

Input Ports

example set input (exa)

Output Ports

example set output (exa)

original (ori)

Parameters

attribute name Attribute name

attribute expression Expression for the new attribute

new attributes List of generated attributes.

auto validate Validate the attribute expression automatically using the remote Hive connec-

34

tion. This is required for appropriate meta data generation during design-time.

2.1. Attributes

Generate Copy

Generate Copy

Q exa b‘__{ ean

Copies a single attribute.
ori

Description

Adds a copy of a single attribute in the input data set.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters
attribute name Attribute to copy

new attribute name New attribute name

35

2. Blending

Generate ID

Generate ID

Q exa %- exa D Adds a new id attribute to the example set, each example is tagged
= o D with a random double number.

Description
This operator adds an ID attribute to the given example set. Each example is tagged with a ran-

dom double number.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

36

2.1. Attributes

Generate Rank

Generate Rank

Q exa = ean This operator generates the (dense) rank of each row within the
$ ori D given partition.

Description

The rank of a row is one plus the count of ranks before the given row. The dense rank of a row
is one plus the count of distinct ranks before the given row.

The operator adds a design-time warning, if the partition_by parameter list is empty. The rea-
son is that if no grouping (partitioning) is defined with this parameter, the operator will generate
a global rank attribute after sorting the whole data set. This can be a very slow operation for a
large data set and is probably not what you want to do. If you wan to add a unique ID variable
to the data set, use the Generate ID operator.

Please note that this operator is only supported starting with Hive 0.11. If you use an older
server release, please update, if you want to use this operator.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters
attribute name Attribute name
partition by Ordered list of the partitioning attributes.

order by The attributes and sorting directions which should be used to determine the order of
the data before the ranking is applied.

dense rank Dense Rank returns the rank of rows within the partition of a result set, without
any gaps in the ranking.

37

2. Blending

2.2 Examples
2.2.1 Filter
Filter Example Range

Filter Example Range

Qexa %- ean

This only allows the first N examples to pass.
ori

Description
This operator selects the first N rows of the input table. The other examples will be removed

from the input example set.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

row limit Row limit

38

2.2. Examples

Filter Examples

Filter Examples

exa % exa D This operator only allows examples to pass if they fulfill a specified

ori D condition.

Description

This

operator takes a data set as input and returns a data set including only the rows that fulfill

a condition. For attribute value_condition the parameter string can be any condition that you
would write in SQL after a WHERE statement. For a HiveQL function reference you can check
the Hive Expression Editor of the Generate Attributes operator.

Various predefined conditions are available for filtering examples. Users can select any of
them by setting the condition class parameter. Examples satisfying the selected condition are
passed to the output port, others are removed. Following conditions are available:

all : if this option is selected, no examples are removed.

correct _predictions : if this option is selected, only those examples make it to the output
port that have correct predictions i.e. the value of the label attribute and prediction at-
tribute are the same.

wrong predictions : if this option is selected, only those examples make to the output port
that have wrong predictions i.e. the value of the label attribute and prediction attribute
are not the same.

no_missing_attributes : if this option is selected, only those examples make it to the output
port that have no missing values in any of their attribute values. Missing values or null
values are usually shown by ‘?’ in RapidMiner.

missing attributes : if this option is selected, only those examples make it to the output
port that have some missing values in their attribute values.

no_missing labels : if this option is selected, only those examples make it to the output
port that do not have a missing value in their label attribute value. Missing values or null
values are usually shown by ‘?’ in RapidMiner.

missing label : if this option is selected, only those examples make to the output port that
have missing value in their label attribute value.

attribute_value_filter : if this option is selected, another parameter (parameter string)is en-
abled in the Parameter panel.

Input Ports

example set input (exa)

Output Ports

example set output (exa)

original (ori)

39

2. Blending

Parameters
condition class Implementation of the condition.

parameter string Parameter string for the condition, e.g. ’attribute=value’ for the Attribute-
ValueFilter.

40

2.2. Examples

2.2.2 Sampling
Sample

Sample

Qexa %- ean

Creates a random sample from a data set by drawing a fraction.
ori

Description

Takes a random sample from a data set.
You can choose from the following sampling methods:

» Sample probability . You specify a sample probability value between 0 and 1. Each exam-
ple has equal probability to be included in the sample data set. This is a fast and simple
method, but you should note that with a constantly growing input data set, the output will
also grow over time.

» Absolute sample size . You specify the number of examples for the sample data set. Please
note that this is only a close estimate of the sample. The sample probability for each ex-
ample will be the ratio of this number and the data set size. This method is slower than
directly specifying the sample probability, but you explicitly limit the size of your sample.

 Balanced data - sample probability per class . You specify a separate probability value for
each class. This method requires an attribute with the ‘label’ role. Examples of a class
that is missing from the list are not included in the sample data set (sample probability is
considered O for them).

 Balanced data - absolute sample size per class . You specify a separate sample size estimate
for each class. This method requires an attribute with the ‘label’ role. Examples of a class
that is missing from the list are not included in the sample data set (sample size is consid-
ered 0 for them). The sample probability for a class will be the ratio of the specified size
and the number of rows for this class in the full data set.

Please note that you cannot specify a seed value for the random generator that the sampling
uses. This means that you may get different result each time you run this operator. Generating
deterministic pseudo-random values in a distributed environment is far from a trivial task. You
can always build a custom, deterministic sampling process with the help of a unique ID attribute,
Generate Attributes and Filter Examples operators.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

41

2. Blending

Parameters
sample Determines how the amount of data is specified.

balance data If you need to sample differently for examples of a certain class, you might check
this.

sample size The estimated number of examples which should be sampled. A sample probabilty
for each example is calculated based on this value.

sample probability The sample probability for each example.
sample size per class The estimated sample size per class.
sample probability per class The fraction per class.

case sensitive Indicateswhether the specified class names should be considered case sensitive
or not.

42

2.2. Examples

Split Data

Split Data

Q exa [¢ par D Splits a data set into partitions.

%:-]

Description

This operators splits the input data set into the specified number of random partitions.

Input Ports

example set (exa)

Output Ports
partition 1 (par)

Parameters

equal sized partitions Indicates that the data rows should be uniformly distributed among
partitions, you only specify the number of partitions.

number of partitions Number of partitions. Datarows are uniformly distributed among them.

partitions The partitions that should be created.

43

2. Blending

2.2.3 Sort
Sort

Sort

Q exa [= ean

ori

This operator sorts the given data set.

Description

This operator sorts the given data set by one or more attributes specified by the parameters.
The examples are sorted according to the natural order of the values of these attribute either in
increasing or in decreasing direction, depending on the setting of sorting direction.

Please note that sorting a large data set with this operator may take very long time. You should
usually use it only on smaller data sets, like one that has limited number of rows after a Filter
Example Range operator.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters
sort attribute Indicates the attribute which should be used for determining the sorting.
sort direction Indicates the direction of the sorting.

additional attributes List of the additional sorting attributes and the corresponding sorting
directions

44

2.3. Table

2.3 Table

2.3.1 Grouping
Aggregate

Aggregate

Q exa (& ean Performs one of the aggregation functions (count, sum...) known
§ ori D from SQL on the data set (with optional grouping).

Description

This operator creates a new data set from the input set showing the results of arbitrary aggre-
gation functions (as SUM, COUNT etc. known from SQL). Before the values of different rows are
aggregated into a new row the rows might be grouped by the values of multiple attributes (sim-
ilar to the group-by clause known from SQL). In this case a new example will be created for each
group. Please note that the HAVING clause known from SQL can be simulated by an additional
Filter Examples operator following this one.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

use default aggregation If checked you can select a default aggregation function for a subset
of the attributes.

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression A regular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression Aregular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

45

2. Blending

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.
block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

default aggregation function The type of the used aggregation function.
aggregation attributes The attributes which should be aggregated.

group by attributes Performs a grouping by the values of the attributes whose names match
the given regular expression.

46

2.3. Table

2.3.2 Rotation
Pivot

Pivot

Q exa & ean This operator rotates a HadoopExampleSet by aggregating and
L S ori D grouping multiple examples of same groups to single examples.

Description

This operator performs the pivoting operation on the input data set. The index attribute param-
eter specifies the attribute whose values are used to identify the examples inside the groups. The
values of this attribute are used to name the group attributes which are created during the pivot-
ing. The group attributes parameter specifies the grouping attributes (i.e. the attributes which
identify examples belonging to the groups).

The rows of the output table contain the aggregated values of the aggregation attributes, cal-
culated with the given aggregation function.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

index attribute Attribute which differentiates examples inside a group.

aggregation attribute Specifies the attribute which should be aggregated.

aggregation function The type of the used aggregation function.

group attributes Attributes that group the examples which form one example after pivoting.

max unique indexes The maximum number of distinct indexes that the operator should pro-
cess.

47

2. Blending

2.3.3 Joins

Join
Join
@t Ta i Builds the join of two data sets using the id or any other key at-
Q fig L S tributes of the sets in order to identify the same examples.
Description

Builds the join of two example sets using the id or any other key attributes of the sets. The
attributes of the result example set will consist of the union set or the union list (depending
on parameter settings, duplicate attributes will be removed or renamed) of both feature sets.
In case of removing duplicate attributes, the one from the left example set will be taken. The
attribute from the right set will be discarded. Special attributes of the second input example set
which do exist in the first example set will simply be skipped.

Input Ports
left (lef)

right (rig)

Output Ports

join (joi)

Parameters

remove double attributes Indicates if double attributes should be removed or renamed
join type Specifies which join should be executed.

use id attribute as key Indicates if the id attribute is used for join.

key attributes The attributes which shall be used for join. Attributes which shall be matched
must be of the same type.

48

2.3. Table

Union
Union
Q oxa exa D Union combines the data from multiple data sets into a single data
. set.
Description

Union appends the data of the second, third etc. input data set to the first input data set. All
input data set must have the same attributes (their number and names and types should match).
The output data set contains all rows from the input data sets (duplicates are not eliminated).

Input Ports

example set 1 (exa)

Output Ports

example set output (exa)

49

2. Blending

2.4 Values
Add Noise

Add Noise

q e %_ eal) This operator adds noise to the given HadoopExampleSet by
ori adding random attributes to it and by adding noise to the existing
attributes. The operator also creates a NoiseModel.

\ A

pre

Description

With the Add Noise operator you can choose the attributes for which customized noise should
be added. This operator can add noise to the label attribute or to the regular attributes sepa-
rately. In case of a numerical label the given label noise (specified by the label noise parameter)
is the percentage of the label range which defines the standard deviation of normal distributed
noise which is added to the label attribute. For nominal labels the label noise parameter defines
the probability to randomly change the nominal label value. In case of adding noise to regular
attributes the default attribute noise parameter simply defines the standard deviation of nor-
mal distributed noise without using the attribute value range. Using the parameter list is also
possible for setting different noise levels for different attributes (by using the noise parameter).
However, it is not possible to add noise to nominal attributes.

The Add Noise operator can add random attributes to the ExampleSet. The number of random
attributes is specified by the random_attributes parameter. New random attributes are simply
filled with random data which is not correlated to the label at all. The offset and linear factor
parameters are available for adjusting the values of new random attributes.

Input Ports

example set input (exa)

Output Ports
example set output (exa)
original (ori)

preprocessing model (pre)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.

regular expression Aregular expression for the names of the attributes which should be kept.

50

2.4. Values

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression A regular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.
block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicatesif only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

random attributes Adds this number of random attributes.

label noise Add this percentage of a numerical label range as a normal distributed noise or
probability for a nominal label change.

default attribute noise The standard deviation of the default attribute noise.
additional noise List of noises for each attribute.
offset Offset added to the values of each random attribute

linear factor Linear factor multiplicated with the values of each random attribute

51

2. Blending

Remap Binominals

Remap Binominals

Q oxa ean This operator modifies the internal value mapping of binominal
& attributes according to the specified negative and positive values
ori or discovers the values automatically.

Description

The Remap Binominals operator modifies the internal mapping of binominal attributes accord-
ing to the specified positive and negative values or discovers the values automatically. The pos-
itive and negative values are specified by the positive value and negative value parameters re-
spectively.

Please note that Radoop is not generally aware of the internal mapping of the binominal at-
tributes as RapidMiner does. If the mapping is unknown, the specified values will be the consid-
ered as the mapping without any error checking. If you are not sure about the concrete values
in the ExampleSet, you can force the checking by selecting the validate values expert parameter.
If this is set to true, the process will throw an error when a row violates the specified mapping,
i.e. it contains another value. If the internal mapping is already known, then it is replaced by
the specified one.

By selecting the “Discover mapping automatically” option Radoop will discover and set the
mapping for the attribute automatically (this takes time). This is useful if you don’t know the
exact values in the Example Set.

Please note that this operator changes the internal mapping so the changes are not explicitly
visible in the ExampleSet. This operator can be applied only on binominal attributes. Please
note that if there is a nominal attribute in the ExampleSet with only two possible values, this
operator will still not be applicable on it. This operator requires the attribute to be explicitly
defined as binominal in the meta data by using the Type Conversion operator .

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.

regular expression Aregular expression for the names of the attributes which should be kept.

52

2.4. Values

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression A regular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.
block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicatesif only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

discover mapping automatically Automatically discover the mapping for the selected at-
tributes.

negative value The first/negative/false value.
positive value The second/positive/true value.

validate values Validate the specified positive and negative values. If false, the specified val-
ues are considered correct and your process may fail if they are not. If true, Radoop will
validate them but this takes extra processing time.

53

2. Blending

Replace

Replace

Gexa % ean

This operator replaces parts of the values of nominal attributes.
ori

Description

This operator replaces parts of the string values of all nominal attributes it is applied on. The
attribute filter type gives the possibility to restrict them. For each value of each attribute it is
checked if the regular expression of replace what matches the string. Each matching part of the
string will be replaced by the value of the replace what parameter. The replacement might be
empty and can contain capturing groups. Please keep in mind that although regular expressions
are much more powerful than simple strings, you might simply enter characters to search for.

Examples:

The attribute contains the values “color red”, “color green” and ”color blue”.
o replacing “color” by “” yields: “red”, “ green”, “ blue”
« replacing “color” by “colour” yields: “colour red”, “colour green”, “colour blue”
« replacing “color\s” by “” yields: “red”, “green”, “blue”

» »

« replacing “\s+” by “_” yields: “color_red”, “color_green”, “color_blue”

« replacing “color\s(.*¥)” by “$1” yields: “red”, “green”, “blue”

« replacing “\s(.*)” by “$1” yields: “red”, “green”, “blue”

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.

regular expression Aregular expression for the names of the attributes which should be kept.

54

2.4. Values

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression A regular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.
block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicatesif only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

replace what A regular expression specifying what should be replaced.

replace by Thereplacement for the region matched by the regular expression. Possibly includ-
ing capturing groups.

55

3 Cleansing

3.1 Normalization

Normalize

Normalize

Q exa f = ean

b ori D Normalizes the attribute values for a specified range.

pre D

Description

This operator performs a normalization. This can be done between a user defined minimum and
maximum value or by a z-transformation, i.e. on mean 0 and variance 1.

Input Ports

example set input (exa)

Output Ports
example set output (exa)
original (ori)

preprocessing model (pre)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression Aregular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression Aregular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

57

3. Cleansing

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.
block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

normalize method Transformation method
min value Min value

max value Max value

58

3.2. Missing

3.2 Missing
Declare Missing Value

Declare Missing Value

Q exa T F ean Declares a missing numeric or nominal value on a selected subset,
§ ori D which will be replaced by NULL.

Description

The given value will be replaced with NULL throughout the specified subset, so it will be treated
as a missing value by subsequent operators.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression Aregular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression A regular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.

block type The block type of the attributes.

59

3. Cleansing

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

attribute value This parameter defines the missing value

mode Select the value type of the missing value

numeric value Defines the missing numerical value

nominal value Defines the missing nominal value

expression value Defines the logical expression for the missing value

auto validate Validate the attribute expression automatically using the remote Hive connec-
tion. This is required for appropriate meta data generation during design-time.

60

3.2. Missing

Replace Missing Values

Replace Missing Val...

Q exa %— ean

Replaces missing values in examples.
ori

Description

Replaces missing values in examples. If a value is missing, it is replaced by one of the functions

» »

“minimum”, “maximum?”, and “average” which is applied to the non missing attribute values of
the example set. The replenishment *value” indicates that the user defined parameter should
be used for the replacement. If you explicitly specify a value, do not use any quotes in it. If you
want to use a quote inside a nominal string value, please use an escape character before it (\).

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression Aregular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression Aregular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.

block type The block type of the attributes.

61

3. Cleansing

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

replace method Replace method

replace value Value

62

3.3. Duplicates

3.3 Duplicates
Remove Duplicates
Remove Duplicates

Qexa %- ean

This operator removes duplicates from a data set.
ori

Description

The Remove Duplicates operator keeps only one row of the row sets where all column values are
the same. The NULL value is considered a unique value, hence, it is only considered equal to
another NULL value.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

original (ori)

63

3. Cleansing

3.4 Dimensionality Reduction
Principal Component Analysis

PCA

This operator performs a Principal Component Analysis (PCA) us-
ing the covariance matrix. The user can specify the amount of vari-
ance to cover in the original data while retaining the best number
of principal components. The user can also specify manually the
number of principal components.

Q exa [= exa

%:- “

ori

\ AW AW

pre

Description

Principal component analysis (PCA) is an attribute reduction procedure. It is useful when you
have obtained data on a number of attributes (possibly a large number of attributes), and believe
that there is some redundancy in those attributes. In this case, redundancy means that some of
the attributes are correlated with one another, possibly because they are measuring the same
construct. Because of this redundancy, you believe that it should be possible to reduce the ob-
served attributes into a smaller number of principal components (artificial attributes) that will
account for most of the variance in the observed attributes.

Principal Component Analysis is a mathematical procedure that uses an orthogonal transfor-
mation to convert a set of observations of possibly correlated attributes into a set of values of
uncorrelated attributes called principal components. The number of principal components is
less than or equal to the number of original attributes. This transformation is defined in such a
way that the first principal component’s variance is as high as possible (accounts for as much of
the variability in the data as possible), and each succeeding component in turn has the highest
variance possible under the constraint that it should be orthogonal to (uncorrelated with) the
preceding components.

Please note that PCA is sensitive to the relative scaling of the original attributes. This means
that whenever different attributes have different units (like temperature and mass); PCA is a
somewhat arbitrary method of analysis. Different results would be obtained if one used Fahren-
heit rather than Celsius for example.

The improved algorithm parameter indicates if the operator should use Hive UDAF for the ex-
ecution. Set this parameter to false if you want to avoid this behaviour (in this case the execution
will be much slower).

Input Ports

example set input (exa)

Output Ports

example set output (exa)
original (ori)

preprocessing model (pre)

64

3.4. Dimensionality Reduction

Parameters

dimensionality reduction Indicates which type of dimensionality reduction should be ap-
plied

variance threshold Keep all components with a cumulative variance smaller than the given
threshold.

number of components Keep this number of components.

improved algorithm Indicates if the improved calculating method should be used.

65

4 Modeling

4.1 Predictive
Combine Models

Combine Models

d mod mod|) Cor:jlblines arbitrary number of models into a voting (bagging)
model.

Description

This operator can be used outside the Radoop Nest.

Combines the prediction models on its input ports into a BaggingModel. This model can then
be applied on both data in the memory or data on the cluster. The operator merges the nominal
mappings of the nominal attributes (including the label’s mapping in case of classification). This
operator allows the combination of models that have been trained on different subsets of an
attribute set (ideal for a Random Forest algorithm), but the inner models must be able to score
a data set that has more regular attributes than the model was trained on (warnings in the log
may warn you about this during scoring).

Input Ports
model input 1 (mod)

Output Ports

model output (mod)

67

4. Modeling

Decision Tree

Decision Tree

Generates a Decision Tree for classification of both nominal and
Q tra A mod D numerical data. It is based on the decision tree implementation in
Ve D Spark ML.

Description

Information about the algorithm can be found here: http://spark.apache.org/docs/latest/ml-
decision-tree.html

Requirements
The operator has the following dependencies on the cluster:

» Spark assembly version 1.5.0 or later. You can set the Spark version for your connection
on the Advanced Connection Panel.

Input Ports

input (inp) This port can have a HadoopExampleSet input. It must have label attribute that
can be either binominal or polynominal.

Output Ports
model (mod) This port delivers the model that is built by the operator.

output (out) This port delivers the original input.

Parameters

file format (selection) Theinput ExampleSet will be materialized in the specified format. This
setting is ignored if the input is already a table in Text or in Parquet format - in this case no
materalization is performed. Please note that you can force materializing in Text/Parquet
by using the Store operator or by setting the File Format parameter of the Radoop Nest.
Default PARQUET.

o TEXTFILE Materializing in Textfile format is supported on all Hive versions.
« PARQUET Materializing in Parquet format requires less storage but requires a later
Hive version.
criterion (selection) Criterion used for information gain calculation. Default Gini.
 Gini Gini
» Entopy Entropy

minimal gain (real) For a node to be split further, the split must improve at least this much
(in terms of information gain). Should be in range [0, 1], default 0.1.

68

4.1. Predictive

maximal depth (integer) Maximum depth of a tree. Deeper trees are more expressive (po-
tentially allowing higher accuracy), but they are also more costly to train and are more
likely to overfit. Should be >= 0, default 20. (Depth 0 means 1 leaf node; depth 1 means 1
internal node + 2 leaf nodes.)

maximum bins (integer) Maximum number of bins used for discretizing continuous features
and for choosing how to split on features at each node. More bins give higher granularity.
Should be >= 2 and >= number of categories in any categorical feature, default 32.

minimal size for split (integer) For a node to be split further, each of its children must re-
ceive at least this number of training instances. Should be >= 1, default 4.

maximum memory in MB (integer) Amount of memory to be used for collecting sufficient
statistics. The default value is conservatively chosen to be 256 MB to allow the decision al-
gorithm to work in most scenarios. Increasing maximum memory can lead to faster train-
ing (if the memory is available) by allowing fewer passes over the data. However, there may
be decreasing returns as maximum memory grows since the amount of communication on
each iteration can be proportional to maximum memory. Default 256.

use node id cache (boolean) Ifthisissetto true, the algorithm will avoid passing the current
model (tree or trees) to executors on each iteration. Default false.

use binominal mappings (boolean) If this is set to true, the algorithm will try to avoid dis-
covering the nominal values. This can decrease the execution time noticeably. Enable this
checkbox if you want to train a tree on only numerical and binominal features and you have
provided a correct mapping for every binominal feature in the training data set. Please note
that in this case your input data must not contain missing values. Default false.

driver memory (MB) (integer) Amount of memory to use for the driver process in MB. You
should consider setting this higher if you train on features with many distinct categorical
values. Set it to O to use the configured default value. Default 2048.

69

4. Modeling

Decision Tree (MLIlib binominal)

Decision Tree (MLIib ...

dra My mod]) Generates a Decision Tree for classification of both nominal and
v numerical data. It is based on the decision tree implementation in
exa D Spark MLIib.

Description

Information about the algorithm can be found at https://spark.apache.org/docs/latest/mllib-decision-
tree.html . Please note that unlike RapidMiner’s Decision Tree, this can handle only binominal
label. The displayed count of label classes in each node in the model is only a scaled probability,
not the exact count.

Input Ports

training set (tra)

Output Ports
model (mod)

exampleSet (exa)

Parameters

file format The input ExampleSet will be materialized in the specified format. This setting is
ignored if the input is already a table in Text or in Parquet format - in this case no mat-
eralization is performed. Please note that you can force materializing in Text/Parquet by
using the Store operator or by setting the File Format parameter of the Radoop Nest. Ma-
terializing in Parquet format requires less storage but requires a later Hive version.

criterion Selects the criterion on which attributes will be selected for splitting.

minimal gain For anode to be split further, the split must improve at least this much (in terms
of information gain).

maximal depth Maximum depth of a tree. Deeper trees are more expressive (potentially al-
lowing higher accuracy), but they are also more costly to train and are more likely to overfit.

maximum bins Number of bins used when discretizing continuous features.

minimal size for split For a node to be split further, each of its children must receive at least
this number of training instances.

maximum memory in MB Amount of memory to be used for collecting sufficient statistics.
The default value is conservatively chosen to be 256 MB to allow the decision algorithm
to work in most scenarios. Increasing maxMemoryInMB can lead to faster training (if the
memory is available) by allowing fewer passes over the data. However, there may be de-
creasing returns as maxMemoryInMB grows since the amount of communication on each
iteration can be proportional to maxMemoryInMB.

70

4.1. Predictive

subsampling rate Fraction of the training data used for learning the decision tree.

use node id cache Ifthisissettotrue, the algorithm will avoid passing the current model (tree
or trees) to executors on each iteration.

use binominal mappings If this is set to true, the algorithm will try to avoid discovering the
nominal values. This can decrease the execution time noticeably.Enable this checkbox if
you want to train a Tree on only numerical and binominal features and you have provided
a correct mapping for every binominal feature in the training data set. Please note that in
this case your input data must not contain missing values.

driver memory (MB) Amount of memory to use for the driver process in MB. You should con-
sider setting this higher if you train on features with many distinct categorical values. Set
it to 0 to use the configured default value.

71

4. Modeling

Linear Regression

Linear Regression

G tra "= mod
e , This operator is a Linear Regression Learner. It is based on the lin-
wei|) ear regression implementation in Spark MLIib.

exa D

Description

Regression is a technique used for numerical prediction. Regression is a statistical measure that
attempts to determine the strength of the relationship between one dependent variable (i.e. the
label attribute) and a series of other changing variables known as independent variables (regular
attributes). Just like Classification is used for predicting categorical labels, Regression is used
for predicting a continuous value. For example, we may wish to predict the salary of university
graduates with 5 years of work experience, or the potential sales of a new product given its price.
Regression is often used to determine how much specific factors such as the price of a commodity,
interest rates, particular industries or sectors influence the price movement of an asset.

Linear regression attempts to model the relationship between a scalar variable and one or
more explanatory variables by fitting a linear equation to observed data. For example, one might
want to relate the weights of individuals to their heights using a linear regression model.

Detailed information about the algorithm can be found at https://spark.apache.org/docs/latest/mllib-
linear-methods.html#linear-least-squares-lasso-and-ridge-regression .

Input Ports

training set (tra)

Output Ports
model (mod)
weights (wei)

exampleSet (exa)

Parameters

file format The input ExampleSet will be materialized in the specified format. This setting is
ignored if the input is already a table in Text or in Parquet format - in this case no mat-
eralization is performed. Please note that you can force materializing in Text/Parquet by
using the Store operator or by setting the File Format parameter of the Radoop Nest. Ma-
terializing in Parquet format requires less storage but requires a later Hive version.

regression method Various regression methods are derived by using different types of reg-
ularization: ordinary least squares or linear least squares uses no regularization; ridge
regression uses L2 regularization; and Lasso uses L1 regularization.

number of iterations Number of iterations of gradient descent to run.

72

4.1. Predictive

step size Theinitial step size of SGD for the first step. Default 0.1. In subsequent steps, the step
size will decrease with stepSize/sqrt(current_iteration_number). This parameter should be
< 1.0. Lower step size requires higher number of iterations. In this case the algorithm will
generally converge slower but results in a better model.

convergence to L Setthe convergence tolerance of iterations. Default 1E-3. Smaller value will
lead to higher accuracy with the cost of more iterations. This parameter is only available
in Spark 1.5 or later. For earlier Spark versions it is skipped.

minibatch fractions Fraction of the input data set that should be used for one iteration of
SGD. Default 1.0 (corresponding to deterministic/classical gradient descent)

add intercept Set if the algorithm should add an intercept.

use feature scaling Scaling columns to unit variance as a heuristic to reduce the condition
number: During the optimization process, the convergence (rate) depends on the condi-
tion number of the training dataset. Scaling the variables often reduces this condition
number heuristically, thus improving the convergence rate. Without reducing the condi-
tion number, some training datasets mixing the columns with different scales may not be
able to converge. Here, if useFeatureScaling is enabled, Spark will standardize the train-
ing features by dividing the variance of each column (without subtracting the mean), and
train the model in the scaled space.

regularization parameter The regularization parameter.

73

4. Modeling

Logistic Regression

Logistic Regression

Q tra % mod
e _ This operator is a Logistic Regression Learner. It is based on the
wei|) logistic regression implementation in Spark MLIib.

exa D

Description

Logistic regression is used to predict a binary response. Detailed information can be found at
https://spark.apache.org/docs/latest/mllib-linear-methods.html#logistic-regression .

The operator supports both Stochastic Gradient Descent (SGD) and Limited-memory BFGS
(LBFGS) optimizers. Information on the optimizers can be found at https://spark.apache.org/docs/latest/mllib-
optimization.html .

Input Ports

training set (tra)

Output Ports
model (mod)
weights (wei)

exampleSet (exa)

Parameters

file format The input ExampleSet will be materialized in the specified format. This setting is
ignored if the input is already a table in Text or in Parquet format - in this case no mat-
eralization is performed. Please note that you can force materializing in Text/Parquet by
using the Store operator or by setting the File Format parameter of the Radoop Nest. Ma-
terializing in Parquet format requires less storage but requires a later Hive version.

optimizer The optimizer to solve the problem. Possible values are SGD (Stochastic Gradient
Descent) and LBFGS (Limited-memory BFGS).

number of iterations Number of iterations of gradient descent to run.

step size The initial step size of SGD for the first step. Default 1.0. In subsequent steps, the
step size will decrease with stepSize/sqrt(current iteration_number).

minibatch fractions Fraction of the input data set that should be used for one iteration of
SGD. Default 1.0 (corresponding to deterministic/classical gradient descent)

convergence to L (L-BFGS) Set the convergence tolerance of iterations for L-BFGS. Default
1E-4. Smaller value will lead to higher accuracy with the cost of more iterations.

74

4.1. Predictive

convergence to L (SGD) Set the convergence tolerance of iterations for SGD. Default 1E-3.
Smaller value will lead to higher accuracy with the cost of more iterations. This parame-
ter is only available in Spark 1.5 or later and its value must be lower than 1.0. For earlier
Spark versions it is skipped.

number of corrections Set the number of corrections used in the LBFGS update. The value
must be greater than 0, by default it is 10. Values of numCorrections less than 3 are not
recommended; large values of numCorrections will result in excessive computing time. It
is recommended to set this parameter between 3 and 10.

add intercept Set if the algorithm should add an intercept.

use feature scaling Scaling columns to unit variance as a heuristic to reduce the condition
number: During the optimization process, the convergence (rate) depends on the condi-
tion number of the training dataset. Scaling the variables often reduces this condition
number heuristically, thus improving the convergence rate. Without reducing the condi-
tion number, some training datasets mixing the columns with different scales may not be
able to converge. Here, if useFeatureScaling is enabled, Spark will standardize the train-
ing features by dividing the variance of each column (without subtracting the mean), and
train the model in the scaled space.

updater Set the updater function to actually perform a gradient step in a given direction. The
updater is responsible to perform the update from the regularization term as well, and
therefore determines what kind or regularization is used, if any.

regularization parameter The regularization parameter.

75

4. Modeling

Naive Bayes

Naive Bayes

Q tra %- mOdD Returns a classification model using estimated normal distribu-
exa D tions.

Description

Naive Bayes learner on the cluster. Trains a Naive Bayes model on your data on the cluster.
The trained model may be applied both on the cluster (Apply Prediction Model operator) or in
the memory (RapidMiner’s Apply Model operator). You can also update a trained Naive Bayes
model with additional data. With Update Prediction Model operator you do not have to train a
new model on the whole data set, just update it with additional examples on the cluster. This
classifier can be used on weighted examples, where the weights are determined by the attribute
having the weight role.

The Naive Bayes classifier algorithm applies Bayes’ theorem with strong independence as-
sumptions. The algorithm assumes normal distribution for numerical attributes. For nominal
attributes the model will be based on the relative frequencies. Please note that nominal at-
tributes having thousands or more unique values should never have a nominal type when ap-
plying a Naive Bayes learner. If a nominal attribute in the training set has too many values,
the operator will throw an error. You should either group these nominals into fewer values or
convert them to numericals. You can also generate numerical or nominal attributes with fewer
distinct values. E.g. date attributes should be converted to numericals, while other informa-
tion, like a flag attribute for weekdays/weekends may be extracted from them to create a proper
training data set.

The algorithm has an expert tuning parameter that does not affect the model output only the
performace of the learning procedure. This parameter is an integer value that defines how many
nominal attributes will be calculated in a single Map/Reduce job. This is a trade/off between
processing time and operative memory usage on the cluster nodes. Hence, you should increase
the value for performance and decrease it if you encounter with any heap space error on the
nodes. However, the latter case is highly unlikely and rather indicates an incorrect usage of
nominal attributes (see above). This parameter can also be set when the model is trained using
the Update Prediction Model operator.

Input Ports

training set (tra)

Output Ports
model (mod)

exampleSet (exa)

Parameters

laplace correction Use Laplace correction to prevent high influence of zero probabilities.

76

4.1. Predictive

nominal group size This parameter affects only the performance, not the output. Statistics
for a group of nominal attributes are calculated together in a single scan. This is the num-
ber of nominal attributes in each group. Increase it for faster learning (fewer scans), de-
crease if nodes run out of memory (more scans).

77

4. Modeling

Random Forest

Random Forest

Generates a Random Forest for classification of both nominal and
Q ra VT mod D numerical data. It is based on the random forest implementation
e D in Spark ML.

Description

Information about the algorithm can be found here: http://spark.apache.org/docs/latest/ml-
ensembles.html#random-forests

Requirements
The operator has the following dependencies on the cluster:

» Spark assembly version 1.5.0 or later. You can set the Spark version for your connection
on the Advanced Connection Panel.

Input Ports

input (inp) This port can have a HadoopExampleSet input. It must have label attribute that
can be either binominal or polynominal.

Output Ports
model (mod) This port delivers the model that is built by the operator.

output (out) This port delivers the original input.

Parameters

file format (selection) Theinput ExampleSet will be materialized in the specified format. This
setting is ignored if the input is already a table in Text or in Parquet format - in this case no
materalization is performed. Please note that you can force materializing in Text/Parquet
by using the Store operator or by setting the File Format parameter of the Radoop Nest.
Default PARQUET.

« TEXTFILE Materializing in Textfile format is supported on all Hive versions.
« PARQUET Materializing in Parquet format requires less storage but requires a later
Hive version.
feature subset strategy (selection) Selects the feature selection strategy. Default Auto.

« Auto Choose automatically for task: If number of trees == 1, set to All If number of
trees > 1 (forest), set to Sqrt.

o All Use all features
e Onethird Use 1/3 ot the features
« Sqrt Use sqrt(number of features)

78

4.1. Predictive

» Log2 Use log2(number of features)

criterion (selection) Criterion used for information gain calculation. Default Gini.
e Gini Gini
« Entopy Entropy

minimal gain (real) For a node to be split further, the split must improve at least this much
(in terms of information gain). Should be in range [0, 1], default 0.1.

maximal depth (integer) Maximum depth of a tree. Deeper trees are more expressive (po-
tentially allowing higher accuracy), but they are also more costly to train and are more
likely to overfit. Should be >= 0, default 20. (Depth 0 means 1 leaf node; depth 1 means 1
internal node + 2 leaf nodes.)

maximum bins (integer) Maximum number of bins used for discretizing continuous features
and for choosing how to split on features at each node. More bins give higher granularity.
Should be >= 2 and >= number of categories in any categorical feature, default 32.

minimal size for split (integer) For a node to be split further, each of its children must re-
ceive at least this number of training instances. Should be >= 1, default 4.

number of trees (integer) Number of trees to train. Should be >= 1, default 10. (If 1, then
no bootstrapping is used, if > 1, then bootstrapping is done.)

maximum memory in MB (integer) Amount of memory to be used for collecting sufficient
statistics. The default value is conservatively chosen to be 256 MB to allow the decision al-
gorithm to work in most scenarios. Increasing maximum memory can lead to faster train-
ing (if the memory is available) by allowing fewer passes over the data. However, there may
be decreasing returns as maximum memory grows since the amount of communication on
each iteration can be proportional to maximum memory. Default 256.

subsampling rate (real) Fraction of the training data used for learning each decision tree.
Should be in range (0, 1], default 1.

use node id cache (boolean) Ifthisissetto true, the algorithm will avoid passing the current
model (tree or trees) to executors on each iteration. Default false.

use binominal mappings (boolean) If this is set to true, the algorithm will try to avoid dis-
covering the nominal values. This can decrease the execution time noticeably. Enable this
checkbox if you want to train a tree on only numerical and binominal features and you have
provided a correct mapping for every binominal feature in the training data set. Please note
that in this case your input data must not contain missing values. Default false.

driver memory (MB) (integer) Amount of memory to use for the driver process in MB. You
should consider setting this higher if you train on features with many distinct categorical
values. Set it to O to use the configured default value. Default 2048.

use local random seed (boolean) Indicates if a local random seed should be used. Default
false.

local random seed (integer) Specifies the local random seed. Should be >= 1, default 1992.

79

4. Modeling

Support Vector Machine

SVM

Q ra lf med D This operator is a Support Vector Machine Learner. It is based on
wei D the support vector machine implementation in Spark MLIib.

exa D

Description

Support Vector Machine is used to predict a binary response. Detailed information can be found
here: http://spark.apache.org/docs/latest/mllib-linear-methods.html#linear-support-vector-machines-
svms

The operator supports Stochastic Gradient Descent (SGD) optimizer. Information on SGD op-
timizer can be found here: http://spark.apache.org/docs/latest/mllib-optimization.html#stochastic-
gradient-descent-sgd

Input Ports

input (inp) This port can have a HadoopExampleSet input. It must have binominal label.

Output Ports

model (mod) This port delivers the model that is built by the operator.
weights (wei) This port delivers the weights computed by the operator.

output (out) This port delivers the original input.

Parameters

file format (selection) Theinput ExampleSet will be materialized in the specified format. This
setting is ignored if the input is already a table in Text or in Parquet format - in this case no
materalization is performed. Please note that you can force materializing in Text/Parquet
by using the Store operator or by setting the File Format parameter of the Radoop Nest.
Default PARQUET.

« TEXTFILE Materializing in Textfile format is supported on all Hive versions.

« PARQUET Materializing in Parquet format requires less storage but requires a later
Hive version.

number of iterations (integer) Number of iterations of gradient descent to run. Default 100.

step size (real) The initial step size of SGD for the first step. In subsequent steps, the step size
will decrease with stepSize/sqrt(current iteration_number). Default 1.0.

minibatch fractions (real) Fraction of the input data set that should be used for one iteration
of SGD. Should be in range [0, 1], default 1.0.

80

4.1. Predictive

convergence to L (real) Set the convergence tolerance of iterations. Smaller value will lead
to higher accuracy with the cost of more iterations. This parameter is only available in
Spark 1.5 or later. For earlier Spark versions it is skipped. Should be in range [0, 1], default
1.0E-4.

add intercept (boolean) Set if the algorithm should add an intercept. Default true.

use feature scaling (boolean) Scaling columns to unit variance as a heuristic to reduce the
condition number: During the optimization process, the convergence (rate) depends on
the condition number of the training dataset. Scaling the variables often reduces this con-
dition number heuristically, thus improving the convergence rate. Without reducing the
condition number, some training datasets mixing the columns with different scales may
not be able to converge. Here, if feature scaling is enabled, Spark will standardize the train-
ing features by dividing the variance of each column (without subtracting the mean), and
train the model in the scaled space. Default true.

updater (selection) Set the updater function to actually perform a gradient step in a given
direction. The updater is responsible to perform the update from the regularization term
aswell, and therefore determines what kind or regularization is used, if any. Default Simple
Updater.

« Simple Updater Simple Updater
» L1 Updater L1 Updater
« Squared L2 Updater Squared L2 Updater

81

4. Modeling

Update Model

Update Model

G exa |+ exa D .
L R Updates a model using data on the cluster
Q mod mod
Description

This operator updates a prediction model using the data in Hive. Radoop currently only supports
updating a Naive Bayes model. The model on the model input port is trained using the data on
the example set input port. The model you update with this operator may have been initially
trained in RapidMiner or on the cluster (Naive Bayes learner operator). Please note that the
data on the example set input port must have exactly the same structure as the training data
which the model was built on. Nominal attributes may have new values, which will update the
model accordingly. For notes on the learning algorithm, see the Naive Bayes operator. This
operator has a parameter where you can specify model type specific parameters for the learning
algorithms.

« DistributionModel - nominal _group size - This expert tuning parameter does not affect the
model output, only the performace of the learning procedure. This parameter is an integer
value (default: 100) that defines how many nominal attributes will be calculated in a single
Map/Reduce job. This is a trade/off between processing time and operative memory usage
on the cluster nodes. Hence, you should increase the value for performance and decrease
it if you encounter with any heap space error on the nodes. However, the latter case is
highly unlikely and rather indicates an incorrect usage of nominal attributes (see Naive
Bayes Radoop learner operator).

Input Ports
example set (exa)

model (mod)

Output Ports
example set (exa)

model (mod)

Parameters

training parameters List of model type specific parameters for the learning algorithms.

82

4.2. Segmentation

4.2 Segmentation
Canopy

Canopy

Q exa % exa D Clustering with Canopy on Mahout

Description

This operator represents an implementation of Canopy clustering. This operator will create a
cluster attribute if not present yet.

Input Ports

example set input (exa)

Output Ports

example set output (exa)

Parameters
distance function Distance function
t1 distance metric The T1 distance metric (distance threshold for adding a point to a cluster)

t2 distance metric The T2 distance metric (distance threshold for keeping the point for fur-
ther processing, T1 > T2)

reducer distance metrics If set to true, different distance thresholds may be specified for the
reducer phase.

reducer t1 distance The reducer’s T1 distance metric. If not specified, T1 is used by the re-
ducer.

reducer t2 distance The reducer’s T2 distance metric. If not specified, T2 is used by the re-
ducer.

canopies min number The minimum size of canopies produced (can be zero)

cluster classification threshold Is a clustering strictness / outlier removal parameter. Its
value should be between 0 and 1. Vectors having pdf below this value will not be clustered.

only result If set, clustering returns only (ID, ClusterID) pairs, and removes other attributes.
This option removes some overhead, thus, should decrease the processing time.

83

4. Modeling

Fuzzy K-Means

Fuzzy K-Means

G o %ﬂ o D Clustering with Fuzzy K-Means on Mahout

clu

Description

This operator represents an implementation of Fuzzy K-Means. This operator will create a clus-
ter attribute if not present yet.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

cluster model (clu)

Parameters
number of clusters Number of clusters

maximum iterations The maximum number of iterations to run, independent of the conver-
gence specified

delta convergence Convergedelta: adouble value used to determine if the algorithm has con-
verged (clusters have not moved more than the value in the last iteration)

distance function Distance function

the fuzzification factor The ”fuzzyness” argument, a double >= 1. If equal to 2, this is equiv-
alent to normalising the coefficient linearly to make their sum 1. If it is close to 1, then
the cluster center closest to the point is given much more weight than the others, and the
algorithm is similar to k-means.

emit most likely cluster A boolean indicating, if true, that the clustering step should only
emit the most likely cluster for each clustered point.

cluster classification threshold Is a clustering strictness / outlier removal parameter. Its
value should be between 0 and 1. Vectors having pdf below this value will not be clustered.

only result If set, clustering returns only (ID, ClusterID) pairs, and removes other attributes.
This option removes some overhead, thus, should decrease the processing time.

use local random seed Indicates if a local random seed should be used for randomization.
Randomization may be used for selecting k different points at the start of the algorithm
as potential centroids.

84

4.2. Segmentation

local random seed This parameter specifies the local random seed. This parameter is only
available if the use local random seed parameter is set to true.

85

4. Modeling

K-Means

K-Means

G exa @ o D Clustering with K-Means on Mahout

clu

Description

This operator represents an implementation of K-Means. This operator will create a cluster at-
tribute if not present yet.

Input Ports

example set input (exa)

Output Ports
example set output (exa)

cluster model (clu)

Parameters
number of clusters Number of clusters
maximum iterations Maximum number of iterations

delta convergence Converge delta: adouble value used to determine if the algorithm has con-
verged (clusters have not moved more than the value in the last iteration)

distance function Distance function

cluster classification threshold Is a clustering strictness / outlier removal parameter. Its
value should be between 0 and 1. Vectors having pdf below this value will not be clustered.

only result If set, clustering returns only (ID, ClusterID) pairs, and removes other attributes.
This option removes some overhead, thus, should decrease the processing time.

use local random seed Indicates if a local random seed should be used for randomization.
Randomization may be used for selecting k different points at the start of the algorithm
as potential centroids.

local random seed This parameter specifies the local random seed. This parameter is only
available if the use local random seed parameter is set to true.

86

4.3. Correlations

4.3 Correlations

Correlation Matrix

Correlation Matrix

Q exa o exa D This operator determines correlation between all numerical at-
&5 tributes and it can produce a weights vector based on these correla-
mat D tions. Correlation is a statistical technique that can show whether

wei and how strongly pairs of attributes are related.

Description

A correlation is a number between -1 and +1 that measures the degree of association between two
attributes (call them X and Y). A positive value for the correlation implies a positive association.
In this case large values of X tend to be associated with large values of Y and small values of X tend
to be associated with small values of Y. A negative value for the correlation implies a negative
or inverse association. In this case large values of X tend to be associated with small values of
Y and vice versa.

This operator can be used for creating a correlation matrix that shows correlations of all the
numeric attributes of the input ExampleSet. Please note that the operator skips the nominal
attributes in the input Example Set. Furthermore, if an attribute contains a null value in any of
the examples, the correlation matrix will contain nulls in the attribute’s row and column. If you
want to avoid this behaviour, please use the Replace Missing Values operator or set the improved
correlation parameter to false - in this case the execution will be much slower, but the correlation
matrix will be the same as RapidMiner’s.

The attribute weights vector; based on the correlations is also returned by this operator.

Input Ports

example set (exa)

Output Ports
example set (exa)
matrix (mat)

weights (wei)

Parameters
normalize weights Indicates if the attributes weights should be normalized.
squared correlation Indicates if the squared correlation should be calculated.

improved algorithm Indicates if the improved calculating method should be used.

87

4. Modeling

Covariance Matrix

Covariance Matrix

Q - ox aD This operator calculates the covariance between all attributes of
b the input HadoopExampleSet and returns a covariance matrix giv-
cov ing a measure of how much two attributes change together.

Description

Covariance is a measure of how much two attributes change together. If the greater values of one
attribute mainly correspond with the greater values of the other attribute, and the same holds for
the smaller values, i.e. the attributes tend to show similar behavior, the covariance is a positive
number. In the opposite case, when the greater values of one attribute mainly correspond to the
smaller values of the other, i.e. the attributes tend to show opposite behavior, the covariance
is negative. The sign of the covariance therefore shows the tendency in the linear relationship
between the variables.

This operator can be used for creating a covariance matrix that shows the covariances of all
the numeric attributes of the input ExampleSet. Please note that the operator skips the nominal
attributes in the input Example Set. Furthermore, if an attribute contains a null value in any of
the examples, the covariance matrix will contain nulls in the attribute’s row and column. If you
want to avoid this behaviour, please use the Replace Missing Values operator.

The improved algorithm parameter indicates if the operator should use Hive UDAF for the
execution. If you set this parameter to false the the execution will be much slower and the co-
variance matrix will not be the same as RapidMiner’s - it calculates the covariance even if there
were nulls in the input example set.

Input Ports

example set (exa)

Output Ports
example set (exa)

covariance (cov)

Parameters

improved algorithm Indicates if the improved calculating method should be used.

88

5

Scoring

Apply Model

Apply Model

a A

mod § = IabD

%:-)

unl mod

Applies a model on the cluster

Description

This operator applies a model on the data in Hive. This means, that you can apply a RapidMiner
model on your data in the cluster. The application of every supported model is performed by a
distributed, scalable algorithm. The operator supports all core RapidMiner prediction and clus-
ter model types. The model type is verified during design time, if possible, and you will get an
error for unsupported models. Please note that the application of several models may require
Java 7 to be used on the Hadoop nodes as well, as that is a requirement of RapidMiner.

You may specify some model specific parameters using the application_parameters .

BaggingModel - materialization_limit - Forces Hive table materialization after the specified
number of iterations (integer; set to zero to turn off; default value: 5). Applying a Bagging-
Model on your data in Hive may result in creating a lot of Hive views. You should set this
value if you experience that the Apply Prediction Model operator hangs or takes too much
time, or even notice that a lot of time elapses between two submitted Hive statements (set
the rapidminer.gui.log level property to FINE and check the Log panel)

DistributionModel - split_statements - If set to true (boolean: use “true” or “false” literals;
default value: false), longer HiveQL statements will be splitted into several statements,
each materializing the data. The code for Naive Bayes scoring may be quite large if the
training data set contains a lot of attributes and/or if the label attribute has several possible
class value. Please note that if you set this to true, the scoring will probably take much
longer time. Use this only if the model application seems to hang or takes too much time.

DistributionModel - use_udf - If set to true (boolean: use “true” or “false” literals; default
value: false), the model scoring will be performed by an UDF written in Java. The presence
of a lot of regular attributes or class values may cause that the HiveQL that implements
the scoring algorithm becomes too large for the HiveQL parser to handle. In this case this
option may help you and prevent such errors.

PCAModel - number _of components - Specify a lower number of components

PCAModel - variance_threshold - Specify a new threshold for the cumulative variance of the
principal components.

PCAModel - keep_attributes - If true, the original features are not removed.

You may also force the usage of the so-called general model applier implementation by setting
use_general_applier to true. In this case the model apply operation is preferred to be performed
by the same code as when the model is applied in-memory. I.e. the core RapidMiner code is

89

5. Scoring

used instead of translating the operation into custom Hadoop code. In this case, however, model
application parameters are not available. If the parameter is set to false, then custom Hadoop
code may be used for several model types to achieve better performance.

Input Ports
model (mod)

unlabelled data (unl)

Output Ports
labelled data (/ab)

model (mod)

Parameters

application parameters List of model type specific parameters for the application (usually
not needed).

use general applier Set it to true to force the usage of the general model applier implementa-
tion. In this case the model apply operation is preferred to be performed by the same code
as when the model is applied in-memory. I.e. the core RapidMiner code is used instead of
translating the operation into custom Hadoop code. If the parameter is set to false, then
custom Hadoop code may be used for several model types to achieve better performance.

90

6 Validation

Performance (Binominal Classification)

Performance
_ This operator delivers as output a list of performance values ac-
Q lab %- perD cording to a list of selected performance criteria (for binominal
d ver " exa D classification tasks).
Description

This performance evaluator operator should be used for classification tasks, i.e. in cases where
the label attribute has a binominal value type. Other polynominal classification tasks, i.e. tasks
with more than two classes can be handled by the Performance (Classification) operator. This op-
erator expects a test HadoopExampleSet as input, whose elements have both true and predicted
labels, and delivers as output a list of performance values according to a list of performance cri-
teria that it calculates. If an input performance vector was already given, this is used for keeping
the performance values.

All of the performance criteria can be switched on using boolean parameters. Their values can
be queried by a ProcessLogOperator using the same names. The main criterion is used for com-
parisons and need to be specified only for processes where performance vectors are compared,
e.g. feature selection or other meta optimization process setups. If no other main criterion was
selected, the first criterion in the resulting performance vector will be assumed to be the main
criterion.

The resulting performance vectors are usually compared with a standard performance com-
parator which only compares the fitness values of the main criterion.

Input Ports
labelled data (/ab)

performance (per)

Output Ports
performance (per)

example set (exa)

Parameters

main criterion The criterion used for comparing performance vectors.
accuracy Relative number of correctly classified examples
classification error Relative number of misclassified examples

kappa The kappa statistics for the classification

91

6. Validation

precision Relative number of correctly as positive classified examples among all examples clas-
sified as positive

recall Relative number of correctly as positive classified examples among all positive examples
lift The lift of the positive class

fallout Relative number of incorrectly as positive classified examples among all negative ex-
amples

f measure Combination of precision and recall: f=2pr/(p+r)

false positive Absolute number of incorrectly as positive classified examples
false negative Absolute number of incorrectly as negative classified examples
true positive Absolute number of correctly as positive classified examples
true negative Absolute number of correctly as negative classified examples

sensitivity Relative number of correctly as positive classified examples among all positive ex-
amples (like recall)

specificity Relative number of correctly as negative classified examples among all negative ex-
amples

youden The sum of sensitivity and specificity minus 1

positive predictive value Relative number of correctly as positive classified examples among
all examples classified as positive (same as precision)

negative predictive value Relative number of correctly as negative classified examples among
all examples classified as negative

psep The sum of the positive predicitve value and the negative predictive value minus 1
skip undefined labels If set to true, examples with undefined labels are skipped.

use example weights Indicated if example weights should be used for performance calcula-
tions if possible.

positive class Specify the positive nominal value for the label attribute (case sensitive). Only
for operators below version 2.1.001.

92

Performance (Classification)

Performance

_ This operator calculates a PerformanceVector containing perfor-
lab %L per D mance values according to a list of selected performance criteria
- applicable for multi-class classification tasks.

o a

per exa D

Description

This performance evaluator operator should be used for classification tasks, i.e. in cases where
the label attribute has a (poly-)nominal value type.

This operator expects a test HadoopExampleSet as input, containing one attribute with the role
label and one with the role prediction . See the Set Role operator for more details. On the basis of
this two attributes a PerformanceVector is calculated, containing the values of the performance
criteria. If a PerformanceVector was fed into performance input, it’s values are kept if it does not
already contain the new criteria. Otherwise the values are averaged over the old and the new
values. The output is compatible and can be combined with the output of the similar RapidMiner
operator.

All of the performance criteria can be switched on using boolean parameters. Their values can
be queried by a Log operator using the same names. The main criterion is used for comparisons
and need to be specified only for processes where performance vectors are compared, e.g. at-
tribute selection or other meta optimization process setups. If no main criterion was selected,
the first criterion in the resulting performance vector will be assumed to be the main criterion.

Input Ports

labelled data (lab)

performance (per)

Output Ports
performance (per)

example set (exa)

Parameters

main criterion The criterion used for comparing performance vectors.

accuracy Relative number of correctly classified examples

classification error Relative number of misclassified examples

kappa The kappa statistics for the classification

absolute error Average absolute deviation of the prediction from the actual value

relative error Average relative error (average of absolute deviation of the prediction from the
actual value divided by actual value)

93

6. Validation

relative error lenient Average lenient relative error (average of absolute deviation of the pre-
diction from the actual value divided by maximum of the actual value and the prediction)

relative error strict Average strict relative error (average of absolute deviation of the predic-
tion from the actual value divided by minimum of the actual value and the prediction)

root mean squared error Averaged root-mean-squared error
squared error Averaged squared error
skip undefined labels If set to true, examples with undefined labels are skipped.

use example weights Indicated if example weights should be used for performance calcula-
tions if possible.

class weights The weights for all classes (first column: class name, second column: weight),
empty: using 1 for all classes.

94

Performance (Regression)

Performance

) This operator calculates a PerformanceVector containing perfor-
lab %- perD mance values according to a list of selected performance criteria
- applicable for regression tasks.

o a

per exa D

Description

This performance evaluator operator should be used for regression tasks, i.e. in cases where the
label attribute has a numerical value type.

This operator expects a test HadoopExampleSet as input, containing one attribute with the role
label and one with the role prediction . See the Set Role operator for more details. On the basis of
this two attributes a PerformanceVector is calculated, containing the values of the performance
criteria. If a PerformanceVector was fed into performance input, it’s values are kept if it does not
already contain the new criteria. Otherwise the values are averaged over the old and the new
values. The output is compatible and can be combined with the output of the similar RapidMiner
operator.

All of the performance criteria can be switched on using boolean parameters. Their values can
be queried by a Log operator using the same names. The main criterion is used for comparisons
and need to be specified only for processes where performance vectors are compared, e.g. at-
tribute selection or other meta optimization process setups. If no main criterion was selected,
the first criterion in the resulting performance vector will be assumed to be the main criterion.

Input Ports
labelled data (lab)

performance (per)

Output Ports
performance (per)

example set (exa)

Parameters

main criterion The criterion used for comparing performance vectors.

root mean squared error Averaged root-mean-squared error

absolute error Average absolute deviation of the prediction from the actual value

relative error Average relative error (average of absolute deviation of the prediction from the
actual value divided by actual value)

relative error lenient Average lenient relative error (average of absolute deviation of the pre-
diction from the actual value divided by maximum of the actual value and the prediction)

95

6. Validation

relative error strict Average strict relative error (average of absolute deviation of the predic-
tion from the actual value divided by minimum of the actual value and the prediction)

squared error Averaged squared error
skip undefined labels If set to true, examples with undefined labels are skipped.

use example weights Indicated if example weights should be used for performance calcula-
tions if possible.

96

Split Validation

Validation

Q tra e mod

tra Randomly splits up the example set into a training and test set and

ave evaluates a model.

ave

=

N\ A A WA

Description

Splits up the data set into training and test data sets. Using these data sets, this meta operator
evaluates a model to estimate the performance of a learning operator.

The meta operator has two subprocesses. The training subprocess should be used to build a
prediction model. The built model is then applied in the testing subprocess. The testing subpro-
cess calculates performance of the model. The inputs of the two subprocesses are the training set
and the test set, respectively. These are two partitions of the original data set. You can specify
the ratio of the training partition.

The Split Validation operator can be used to predict the performance of a model on unseen
data when no explicit test data set is available.

Input Ports

training (tra)

Output Ports
model (mod)
training (tra)
averagable 1 (ave)

averagable 2 (ave)

Parameters

split ratio Relative size of the training set

97

7 Utility

Materialize Data

Materialize Data

_ This operators materializes its input data set before passing it onto
Q exa %L exa D its output port.

Description

Materialization means that the operator performs all deferred calculations on the input data set
and writes the data to the distributed file system (into a temporal table). It creates a fresh, clean
copy of the data. Generally speaking, you should trust Radoop on handling the materialization
of the data sets. The software optimizes operations by accumulating calculations of consecutive
operators into the minimum number of distributed jobs. The cost-based optimizer only writes
the data to the disk, if it is necessary or if the materialization prevents multiple execution of
the same operation. This feature dramatically increases performance and decreases storage re-
quirements. Inrare cases should you override this behaviour by using an explicit materialization
operator. If you want to write your data into a permanent table, please use the Store operator.

If the force parameter is set to true, then the cost-based estimates and optimization treshold is
ignored and the data is written to the disk for sure. Ifitis set to false, then the operator considers
the cost estimates of the deferred calculations of previous operators and decides whether to write
the data to the disk or not.

One case for using this operator may be that there is some kind of randomization in the process
and multiple runs may result in different result. With a materialization step, you can be 100%
sure that the preceding operations will not be performed multiple times (hence, you avoid possi-
bly delivering different results on different branches). However, Radoop, by itself, knows which
operators may be undeterministic. If the process forks after such an operator, then the software
materializes the data, before proceeding with the execution of the two or more branches (see
also Multiply operator).

Another justifiable reason for using this operator may be troubleshooting. You may encounter
with a rare, strange error, e.g. a Hive error that occurs in an operator of your process. In this
case you should use the Breakpoint feature to localize the error. This may be tricky, because you
usually cannot be sure that the error lies in the operator, in which the process fails, as the cause
may be in one of the deferred calculations of earlier operators. However, if you have managed to
find the cause of the error and you are sure that your process should otherwise succeed - so the
error is indeed a Hive error caused by complex calculations -, you may try to create a workaround
by putting a Materialize Data operator right before the operator in which you think the process
fails. This way, you may be able to create a workaround, if the process succeeds with the Mate-
rialize Data operator added. If it still fails you should continue the breakpoint method, or test
the operation in another way.

Input Ports

example set input (exa)

99

7. Utility

Output Ports

example set output (exa)

Parameters

force Force materialization and ignore cost-based optimization.

100

Multiply

Multiply

Q inp OutD This operators simply multiplies selected input objects.

%:-]

Description

In some cases you might want to apply different parts of the process on the same input object.
You can use this operator to create k copies of the given input object.

If the input object is a HadoopExampleSet (data set), then this operator first performs all com-
plex deferred calculations on the data set and writes the output to the distributed storage before
passing it through on its output ports. This way, the operator prevents redundant calculations
later after forking. Without this materialization step, all branches may re-execute the same cal-
culations.

Materialization generally means that the operator performs all deferred calculations on the
input data set and writes the data to the distributed file system (into a temporal table). It cre-
ates a fresh, clean copy of the data. Generally speaking, you should trust Radoop on handling
the materialization of the data sets. The software optimizes operations by accumulating calcu-
lations of consecutive operators into the minimum number of distributed jobs. The cost-based
optimizer only writes the data to the disk, if it is necessary or if it prevents multiple execution of
the same operation. This feature dramatically increases performance and decreases storage re-
quirements. In rare cases should you override this behaviour by explicitly telling Radoop when
to write the data to the disks.

One use case for setting the do_not_materialize parameter to true, is when you are low on free
disk space and you want to minimize disk space usage. This is a trade-off between disk space
usage and execution time.

Input Ports
input (inp)

Output Ports
output 1 (out)

Parameters

do not materialize If this expert parameter is set to true, the operator does not materialize
the input data set before branching. Please read the operator help about this option.

101

7. Utility

Subprocess (Radoop)

Subprocess (Radoop)

Q in ‘E = OUtD This operator contains a process within a process.

|
=

Description

This is a simple operator chain which can have an arbitrary number of inner operators. The main
purpose of this operator is to reduce process complexity and introduce a structure to the whole
process.

Input Ports
in1(in)

Output Ports
out 1 (out)

102

7.1. Hive

7.1 Hive
Copy Hive Table

Copy Table

Q thr = thrD Copies a Hive table.

%:- ¥

Description

Copies the specified Hive table. If the overwrite parameter is true the operator drops the possibly
existing table with the given name. If set to false, the operator will generate an error in case
of a conflict. Partitioned tables cannot be copied. For this purpose use the Retrieve and Store
operators and specify the partitioning attributes explicitly. Please note that the execution may
fail if you overwrite a table used by the current process.

Input Ports
through 1 (thr)

Output Ports
through 1 (thr)

Parameters

use default database for old table Usethe database specified in the connection of the Radoop
Nest.

database for old table Name of the database being used.
old table Table to copy.

use default database for new table Usethe database specified in the connection of the Radoop
Nest.

database for new table Name of the database being used.
new table The name of the copied table.

overwrite Determines whether a possibly existing table with the same table name should be
overwritten. If set to false an exception is thrown in case of a conflict.

103

7. Utility

Drop Hive Table

Drop

(Jtr 7w) Dropsa Hive table.

Description

Drops (deletes) the specified Hive table or view. If the fail if missing parameter is true the operator
generates an error in case of a missing table or view. Please note that the execution may fail if
you drop a table used by the current process.

Input Ports
through 1 (thr)

Output Ports
through 1 (thr)

Parameters

use default database for table Use the database specified in the connection of the Radoop
Nest.

database for table Name of the database being used.
table Table to drop.

fail if missing Determines whether an exception should be generated if the table is missing,
e. g. because it already got deleted in the last run. If set to false nothing happens if this
error occurs.

104

7.1. Hive

Rename Hive Table

Rename Table

Q thr ¢ thrD Renames a Hive table.

%:- ¥

Description

Renames the specified Hive table. If the overwrite parameter is true the operator drops the pos-
sibly existing table with the given name. If set to false, the operator will generate an error in
case of a conflict. Please note that the execution may fail if you overwrite a table used by the
current process.

Input Ports
through 1 (thr)

Output Ports
through 1 (thr)

Parameters

use default database for old table Usethe database specified in the connection of the Radoop
Nest.

database for old table Name of the database being used.
old table Table to rename.

use default database for new table Usethe database specified in the connection of the Radoop
Nest.

database for new table Name of the database being used.
new table The new table name.

overwrite Determines whether a possibly existing table with the same table name should be
overwritten. If set to false an exception is thrown in case of a conflict.

105

7. Utility

7.2 Scripting
Hive Script

Hive Script

Q exa = exa D Runs an arbitrary Hive QL script.

%:- ¥

Description

This operator is for advanced users who want to write their own Hive QL scripts for data manip-
ulation. The script can refer to the example sets on its input ports as ##inputtablel## , ##in-
puttable2## , etc. The script should start with the following clause (do not change this line):
CREATE VIEW ##outputtable## AS .

By default, the operator automatically validates the script using the remote connection to the
Hive server during design-time. The meta data on the output port shows precisely the expected
output data set structure. However, due to the remote connection, this adds some latency to the
Design view, as the change in any operator before the Hive Script operator in the process causes
some remote calls to revalidate the user-defined Hive script and generate the output meta data.
If this latency is unacceptable for you, uncheck the auto validate parameter to prevent these
automatic remote calls. In this case, however, this operator cannot predict the output data set
structure, hence, it simply propagates its input meta data to its output port. The auto_validate
parameter has no effect during the process execution.

The operator automatically copies the attribute roles of the first input data set to the output.
An attribute of the output data set that exists in the first input data set keeps its role.

Input Ports

example set input 1 (exa)

Output Ports

example set output (exa)

Parameters
hivescript The Hive script to execute.

auto validate Validate the script automatically using the remote Hive connection. This is re-
quired for appropriate meta data generation during design-time.

user defined functions Add User-Defined Functions (UDFs) that can be used in the script.
The functions are defined by their name and the class name that implements it. Please
note that the class must exist both in Hadoop’s classpath and Hive’s classpath.

preserve binominal mappings Keep the mapping for the binominal attributes. If set to false,
they will be converted to nominals. If true, you you should not introduce new values to the
binominal attribute other than the positive value, the negative value and missings.

106

7.2. Scripting

Pig Script

Pig Script

Q exa I‘ ean Runs an arbitrary Pig script.

Description

This operator is for advanced users who want to write their Pig scripts to manipulate their data
directlyinthe process data flow. This operator also enables Pig experts to integrate their existing
Pig Latin code into a Radoop process. To be able to do this, please note the following instructions
about handling input and output data in your Pig script.

As a Pig Latin script may work on multiple inputs and produce multiple outputs, the operator
may have arbitrary number of inputs and outputs. Just connect an input example set to the free
input port if you want to use it in you Pig script. Similarly, you can connect an output port if you
want to produce another output with this operator. Your Pig script should specify the data on
these output ports.

The first input data set should be referred in the Pig script using the following keywords: ##in-
putfilel## , ##inputstoragel## , ##inputcolumns1## . Before running the operator, Radoop will
replace these keywords with the appropriate values to produce a valid Pig script. The ##input-
file1## keyword refers to the directory that contains the data of the first input example set. The
##inputstorage1## keyword will be replaced by the appropriate Pig storage handler class (with
their arguments like the field separator) that the software determines automatically for this in-
put data set. The ##inputcolumns1## keyword refers to the list of column name and column type
pairs of the input example table. The conversion of RapidMiner (and Hive) column types to Pig
data types is done automatically. The default Pig script of the operator shows a simple line that
loads an input example set using these keywords. The relation name here can be any arbitrary
name.

operator_inputl = LOAD ‘##inputfile1##” USING ##inputstoragel## AS (##inputcolumns 1##);

You can load all input example sets the same way, just use the next integer number in the
keywords instead of 1. Only in very rare cases should you consider changing this template for
loading your input data.

You can later insert a column list of the your first input example set into the script with the
keyword ##inputcolumnaliases1## . E.g. this may be used in a FOREACH expression, like in the
following default script code line.

operator_outputl = FOREACH operator_inputl GENERATE ##inputcolumnaliases 1##;

Otherwise, you may refer to the columns of an example set by their RapidMiner attribute name
(this is true if you load your data with the default template (##inputcolumns1##)).

Generating output data sets is somewhat similar to handling input data sets. You should use
the STORE Pig expression to produce an output. Here, the relation name is not arbitrary, you
should use operator_outputl alias for the first output, operator_output2 for the second, etc. The
keywords that handle these output connections are similar to the input keywords: ##output-
file1## , ##outputstoragel## . The ##outputfile1## keyword will be replaced by a name (and path)
for the connected first output. The ##outputstorage1##keyword refers to the Pig storage class for
the first output. The default Pig script produces the first output example set with the following
line:

STORE operator_outputl INTO ‘##outputfile1##” USING ##outputstoragel##;

107

7. Utility

You probably should never change this template for producing output data sets. The alias
(relation name: operator _outputl) for the output is important because Radoop will look for this
name to describe the schema of the first output. It will use this schema to create the output
data set after converting the Pig data types back to RapidMiner attribute types (the log may
contain warnings for possibly unintended data type conversions). You will get a process setup
error during design time (see the Problems panel), if the software is not able to analyze such an
output relation. The reason for this can be that the script has errors, or you have not defined a
relation for a connected output port.

The full script will be processed by the Pig engine when the process reaches this operator.
However, for generating output metadata and validating the script, Radoop will execute part of
the script during design time. To be explicit, the lines before the first STORE expression will
be processed and validated. You may get an error message for an invalid script or for invalid or
missing output relations.

Please note that the schema of all output relations must be known to the Pig engine. This
means that, for example, if you use a STREAM command, you must explicitly specify the schema
in the script.

The operator integrates Pig 0.11.2 release.

Input Ports

example set 1 (exa)

Output Ports

example set 1 (exa)

Parameters
pigscript The Pig script to execute.

preserve binominal mappings Keep the mappings of the binominal attributes. If set to false,
they will be converted to nominals. If true, you you should not introduce new values to the
binominal attribute other than the positive value, the negative value and missings.

108

7.2. Scripting

Spark Script

Spark Script

Q exa iy ean Executes an arbitrary Spark script written in R or Python.
[

Description

This operator executes the script specified as parameter. The arguments of the script correspond
to the input ports, where Hadoop example sets are converted to Spark DataFrames. Analogously,
the values returned by the script are delivered at the output ports of the operator, where Spark
DataFrames are converted to Hadoop example sets.

Requirements
The Spark Script operator has the following dependencies on the cluster:

» Spark assembly version 1.5.0 or later. You can set the Spark version for your connection
on the Advanced Connection Panel.

 For executing Spark script in Python: Python 2.6+ or Python 3.4+ installed on the cluster
nodes. For using Spark MLIib or spark.ml classes: numpy package installed on the cluster
nodes.

« For executing Spark script in R: R 3.1+ installed on the cluster nodes.

Meta data delivery

The Spark Script operator does not provide special meta data handling. It gives the meta data
of the Nth input port on the Nth output port. If there are more output ports than input ports,
the last input port’s meta data is delivered on the additional output ports.

YARN log collection

RapidMiner Radoop is able to collect and process the aggregated YARN logs to give a decent error
message about a failed Spark script execution. This log is shown in the Log View (View ->Show
View ->Log). Please note that for this service the YARN log aggregation has to be enabled on
the cluster. You can set the timeout for the log collection in the Preferences/Radoop menu. To
turn off the feature, set the timeout to 0.

Input Ports

input (inp) The Script operator can have an arbitrary number of HadoopExampleSet inputs.
Radoop automatically converts them to Spark DataFrame objects by materializing them in
Parquet format. They can be used in the rm_main function as input arguments. If you use
multiple input ports, modify the rm_main function to accept more arguments, respectively.
Please note that for Parquet materialization you need to have Hive 0.13 or later on the
cluster.

109

7. Utility

Output Ports

result (res) The Script operator can have an arbitrary number of HadoopExampleSet outputs.
The script must return a DataFrame for every connected output port. The execution will
fail if you return less DataFrames than the number of the connected output ports. You can
return multiple outputs by returning a list or tuple in Python (e.g. return [resultl, result2]),
or a vector in R (e.g. return(c(resultl, result2));).

Parameters

language (selection) The language for Spark scripting. The possible values are R or Python.
« Python Spark Python (pyspark) API Docs: http://spark.apache.org/docs/latest/api/python
« R Spark R (sparkr) API Docs: http://spark.apache.org/docs/latest/api/R/index.html

R/Python script (text) The Spark script to execute. A method (function) with the name

rm_main with one input argument and one return value is defined in the default script.
Please do not change the name of the function. It can have as many arguments as the
number of the connected input ports and as many returned values as the number of the
connected output ports. When using R, please return the output DataFrames as a list (see
the default script or the examples).

Other functions and imports can be defined in the script. If you want to import and use
third-party sources, please add them as additional sources.

In Spark 1.5 it is possible to reference DataFrame columns by name. This is the preferred
way when using the operator over the column indexing as the attribute order of the un-
derlying Hive table is not guaranteed and may be different from the attribute order in the
meta data. If you need to use indexing (e.g. because the DataFrame is converted into an
RDD), please insert a Reorder Attributes operator before the Spark Script to guarantee the
attribute order.

additional local sources (enumeration) You can specify additional local sources by adding
entries to this parameter. The supported file extensions are .zip for compressed formats
and .py/.R for source files. RapidMiner Radoop will automatically upload the specified local
sources to the HDFS every time you execute the process. If you want to avoid this behaviour
please upload the sources to the HDFS and specify them as additional HDFS sources . In
Python, the additional sources can be imported with the

from ... import ... syntax. In R, source files can be referenced with
source(...) and the packages with

library(...) . The packages installed on the cluster nodes can also be imported and used in
the script (e.g. the numpy package).

additional hdfs sources (enumeration) If you want to avoid uploading large source files or
packages to the HDFS you can specify their absolute HDFS path in this parameter. Please
use this parameter instead of the additional local sources if you use RapidMiner Server to
execute the process.

preserve binominal mapping (boolean) Keep the mappings of the binominal attributes in
the first input HadoopExampleSet. If set to false, they will be converted to nominals. If
true, you should not introduce new values to the binominal attribute other than the pos-
itive value, the negative value and missings.

110

7.2. Scripting

Tutorial Processes

Running SparkSQL using the Python and R Spark API

inp out
inp PySpark SQL out
Gexa N exa) out
<<
G exa exa)
Multiply
C inp 5 out)
&-.‘.
out)
out|)
SparkR SQL
Gexa M exa)
Ko
G exa exa)

Figure 7.1: Tutorial process ‘Running SparkSQL using the Python and R Spark APT.

This tutorial process uses the Spark Script operator to execute SparkSQL commands. First
we generate our example data with the ‘Generate Sales Data’ operator and pass this data to the
"Radoop Nest’. In the Radoop Nest we use the ‘Multiply’ operator, which channels the data into
two separate Spark Script operators. These two operators do the same: The first (PySpark SQL)
uses the Spark Python API, while the second (SparkR SQL) uses the Spark R API to execute a
SparkSQL query on the input data. The output of both Spark Script operators appear as the
output of the RapidMiner process.

Please note that to execute the tutorial process, you need to set a properly configured Con-
nection parameter for the Radoop Nest.

Running K-Means using Spark ML in Python

This tutorial process uses the Spark Script operator to execute a K-Means clustering. First we
generate our example data with the ‘Generate Data’ operator, remove the ‘label’ attribute and
pass this data to the ‘Radoop Nest’. In the Radoop Nest we use the Spark Script operator to con-
duct a K-Means clustering. The parameters for the K-Means algorithm are set in the Python code
of the Spark Script operator. The output of the operator will contain the result of the clustering
in the ‘cluster_index’ attribute.

111

7. Utility

out

Spark Script out

exa exa

<<

exa exa

a a
N\ A

Run K-Means
in PySpark

Figure 7.2: Tutorial process ‘Running K-Means using Spark ML in Python’.

Logistic Regression in Python and R

This tutorial process uses the Spark Script operator to train a Logistic Regression model and
apply it on a test dataset. First we generate our example data with the ‘Generate Team Profit
Data’ operator, convert the label values to binary values, drop all non-numeric attributes and
pass this data to the ‘Radoop Nest’. In the Radoop Nest we generate a training and a test dataset
by splitting the input data into two parts. We remove the label from the test data and connect
these datasets as the inputs of the Python and R Spark Script operators. The output of these
operators will hold the results of the classification in the attribute called ‘prediction’.

112

7.3. Process Control

Multiply out

Run Logistic Regression out
in PySpark

PySpark logreg

training data

test data SparkR logreg

remove label Multiply (2)

Run Logistic Regression
in SparkR

Figure 7.3: Tutorial process ‘Logistic Regression in Python and R’.

7.3 Process Control
Loop (Radoop)

Loop (Radoop)

i o out|) Performs its inner operators k times.

t=

Description

Performs its inner operators for the defined number of times. Optionally, a macro can be defined
that increments after every iteration. To use such a macro, set the set_iteration_macro param-
eter to true and choose a name for the iteration macro. You can access the current value of this
macro in any operators inside the subprocess. (Please note that during design-time validation,
macros cannot be substituted, hence, using them may lead to design-time errors, but that does
not mean that the process will fail.)

The results of the subprocess runs are collected and returned as a Collection of objects.

This operator is a general looping operator. For some specific tasks, there are special loop-
ing operators, like the Loop Attributes operator that loops through the specified subset of the
attributes of the input data set.

113

7. Utility

Input Ports
input 1 (inp)

Output Ports
output 1 (out)

Parameters

set iteration macro Selects if in each iteration a macro with the current iteration number is
set.

macro name The name of the iteration macro.

macro start value The number which is set for the macro in the first iteration.
iterations Number of iterations

limit time If checked, the loop will be aborted at last after a specified time.

timeout Timeout in minutes

114

7.3. Process Control

Loop Attributes (Radoop)

Loop Attributes (Rad...

Q oxa ea D Iterates over the given features and applies the inner operators for
() each feature where the inner operators can access the current fea-
res ture name by a macro.

Description

This operator takes an input data set and applies its inner operators as often as the number of
features of the input data is. Inner operators can access the current feature name by a macro,
whose name can be specified via the parameter iteration macro .

The user can specify with a parameter if this loop should iterate over all features or only over
features with a specific value type, i.e. only over numerical or over nominal features. A regular
expression can also be specified which is used as a filter, i.e. the inner operators are only applied
for feature names matching the filter expression.

Input Ports

example set (exa)

Output Ports
example set (exa)

result 1 (res)

Parameters

attribute filter type The condition specifies which attributes are selected or affected by this
operator.

attribute The attribute which should be chosen.
attributes The attribute which should be chosen.
regular expression Aregular expression for the names of the attributes which should be kept.

use except expression If enabled, an exception to the specified regular expression might be
specified. Attributes of matching this will be filtered out, although matching the first ex-
pression.

except regular expression A regular expression for the names of the attributes which should
be filtered out although matching the above regular expression.

value type The value type of the attributes.

use value type exception If enabled, an exception to the specified value type might be spec-
ified. Attributes of this type will be filtered out, although matching the first specified type.

except value type Except this value type.

115

7. Utility

block type The block type of the attributes.

use block type exception If enabled, an exception to the specified block type might be spec-
ified.

except block type Except this block type.
numeric condition Parameter string for the condition, e.g. ’>=5’
invert selection Indicates if only attributes should be accepted which would normally filtered.

include special attributes Indicate if this operator should also be applied on the special at-
tributes. Otherwise they are always kept.

iteration macro The name of the macro which holds the name of the current feature in each
iteration.

116

7.4. Local In-Memory Computation

7.4 Local In-Memory Computation
In-Memory Subprocess (Full)

In-Memory Subproce...

exa out
E D Runs In-memory subprocess iterations on data partitions.

d
Q inp
i

Description

This meta operator can be used to create a RapidMiner subprocess inside the Radoop Nest. The
operator splits its input data set into partitions (chunks) that fit into the memory. In each iter-
ation it fetches the data of one partition into the memory and executes its subprocess on this
ExampleSet. Rows are randomly and uniformly distributed among the partitions, hence, Ex-
ampleSets in each iterations should roughly require the same amount of memory. After the
required number of iterations, the whole data set will be processed by the operator chain.

If you connect an ExampleSet to one of the output ports, it will generate a HadoopExampleSet.
The data in each iteration will be appended to the underlying Hive table. In a typical use case,
you perform a complex preprocessing subprocess on a large dataset - processing one partition in
each iteration -, then write the rows back to the distributed file system. Other type of IOObjects
are delivered in a Collection on the chain’s output port.

You control the partitioning by choosing from the following two methods:

« Fixed number of iterations . The data is randomly splitted into the specified number of par-
titions. In this case you can explicitly control the number of iterations. However, if you
have constantly growing data, you have to keep an eye on the partitions’ size, as they should
always fit into the memory.

« Fixed partition size . You specify the estimated number of rows in a partition. This is the
preferred method if you expect the data set to grow constantly, as you can explicitly control
the size of the data that should fit into the operative memory. This method first counts the
number of rows to get the required number of partitions.

Optionally, a macro can be generated for the loop that increments after every iteration. The
set iteration macro parameter should be set to true to define the iteration macro. The name and
the start value of the macro can be specified by the macro name and macro start value parameters
respectively.

Please note that you cannot specify a seed value for the random generator that the sampling
uses. This means that you may get different result each time you run this operator. Generating
deterministic pseudo-random values in a distributed environment is far from a trivial task. You
can always build a custom, deterministic sampling process with the help of a unique ID attribute,
Generate Attributes and Filter Examples operators.

Input Ports
example set input (exa)

input 1 (inp)

117

7. Utility

Output Ports
output 1 (out)

Parameters

set iteration macro Selects if in each iteration a macro with the current iteration number is
set.

macro name The name of the iteration macro.
macro start value The number which is set for the macro in the first iteration.

partitioning method Select a method for partitioning the data set to chunks that fit into the
memory.

number of iterations The data will be partitioned into the specified number of roughly equal
sized partitions. Each iteration processes one partition that should fit into the memory.

chunk size The datawill be partitioned into chunks with roughly the specified number of rows.Each
iteration processes one partition that should fit into the memory.

118

7.4. Local In-Memory Computation

In-Memory Subprocess (Sample)

In-Memory Subproce...

q
q

exa out .
E D Runs an in-memory subprocess on sampled data.

inp
ts

Description

This meta operator can be used to create a RapidMiner subprocess inside the Radoop Nest. The
subprocess works on data that resides in the client’s operative memory. This means that the
operator chain takes a random sample of the data set input (extracts an ExampleSet object).
After the subprocess completes its operation, the meta operator pushes data on its output back
to the cluster. The sample method and the sample size can be controlled by the parameters.

The typical use case for this operator is to learn a prediction model on a sampled training
data set. You can use any of RapidMiner’s hundreds of operators to achieve this task. Every core
operator or extension operator (except Radoop operators) is allowed to use, as data sets reside
in the operative memory and no task is pushed to the cluster.

You can select from the following sampling methods for the data set inputs:

» Sample probability . You specify a sample probability value between 0 and 1. Each exam-
ple has equal probability to be included in the sample data set. This is a fast and simple
method, but you have to be careful when you are dealing with constantly growing data.
Your data sample in this case will also grow and you may end up running out of memory.

» Absolute sample size . You specify the number of examples for the sample data set. Please
note that this is only a close estimate of the sample. The sample probability for each ex-
ample will be the ratio of this number and the data set size. This method is slower than
directly specifying the sample probability, but is much safer if your large data set is growing
constantly.

 Balanced data - sample probability per class . You specify a separate probability value for
each class. This method requires an attribute with the ‘label’ role. Examples of a class
that is missing from the list are not included in the sample data set (sample probability is
considered O for them).

 Balanced data - absolute sample size per class . You specify a separate sample size estimate
for each class. This method requires an attribute with the ‘label’ role. Examples of a class
that is missing from the list are not included in the sample data set (sample size is consid-
ered O for them). The sample probability for a class will be the ratio of the specified size
and the number of rows for this class in the full data set.

Please note that you cannot specify a seed value for the random generator that the sampling
uses. This means that you may get different result each time you run this operator. Generating
deterministic pseudo-random values in a distributed environment is far from a trivial task. You
can always build a custom, deterministic sampling process with the help of a unique ID attribute,
Generate Attributes and Filter Examples operators.

119

7. Utility

Input Ports
example set input (exa)

input 1 (inp)

Output Ports
output 1 (out)

Parameters
sample Determines how the amount of data is specified.

balance data If you need to sample differently for examples of a certain class, you might check
this.

sample size Theestimated number of examples which should be sampled. A sample probabilty
for each example is calculated based on this value.

sample probability The sample probability for each example.
sample size per class The estimated sample size per class.
sample probability per class The fraction per class.

case sensitive Indicateswhether the specified class names should be considered case sensitive
or not.

120

7.5. Process Pushdown

7.5 Process Pushdown

Single Process Pushdown

Single Process Push...

Q exa _Jwy exa D Pushes the process to Hadoop and executes it on a single node, us-

] : > 1
Q inp L out D ing the node’s memory and computation resources.

t=

Description

The subprocess in this meta operator can contain almost any operator from RapidMiner. Fur-
thermore, external extensions (e.g. Weka, Text Processing) can be used as well. A few operators,
such as operators related to database handling are not supported (see warnings in the Problems
panel).

The subprocess is executed on a single cluster node using the node’s available memory. Please
note that this operator uses Spark, and a Spark job needs significantly more memory to execute
the same process than what a standalone RapidMiner execution would need. Memory consump-
tion overhead varies from process to process; a general rule of thumb is to dedicate 4x more
memory to the Spark job than what you would expect to be needed in RapidMiner Studio. If the
Spark Resource Allocation Policy in your connection is set to Static, Heuristic Configuration , the
operator automatically calculates the memory for the Spark job based on your cluster setup. If
Static, Manual Configuration is set, the driver memory (MB) and the executor max memory % pa-
rameters are ignored and the Advanced Spark Parameters from the Radoop Connection are used.
Please note that the Static, Default Configuration and the Dynamic Resource Allocation settings
are not recommended to be used with this operator in real-life use cases.

The first input port can handle an arbitrarily large example set. The other input ports can han-
dle any IOObject (model, performance vector, example set, etc.). Please note that if you connect
an example set to any other than the first input port, the data flowing through these ports will
be temporarily stored in RapidMiner Studio’s memory, so you should only use this for relatively
small example sets. The same stands for the output ports: the first output port can handle an
arbitrarily large example set, whereas the others work for other kinds of IOObjects , or example
sets that fit in RapidMiner Studio’s memory.

Disclaimer: When the Single Process Pushdown operator is used, all extensions that are installed
on the executing RapidMiner Studio instance will be shipped to Hadoop.

Input Ports

example set input (exa) This port can have an arbitrarily large HadoopExampleSet input. The
input will be materialized in Parquet format.

input (inp) This operator can have an arbitrary number of IOObject inputs. The inputs are se-

rialized and sent to the cluster. Since example sets for this input are collected in memory,
it is recommended that you only use this input for relatively small example sets.

121

7. Utility

Output Ports

example set output (exa) This port delivers an arbitrarily large HadoopExampleSet output.
The output will be materialized in text format.

output (out) The operator can have an arbitrary number of additional IOObject outputs. The
outputs are serialized and sent back to RapidMiner Studio. If an example set is delivered
here, it is collected in memory, therefore it is recommended that you only use this output
relatively small example sets.

Parameters

sample data (boolean) Use asample of the input data. The sampling can be absolute of prob-
abilistic.

sample (selection) Determines how the sampling is conducted:

« absolute Absolute sampling. The size of the desired sample needs to be provided.
 probability Probabilistic sampling. The sample probability needs to be provided.

balance data (boolean) Check this if you need to sample differently for examples of a certain
class.

sample probability per class This parameter specifies the probability of examples per class.
This parameter is only available when the sample parameter is set to ‘probability’ and the
balance data parameter is set to true.

sample size per class This parameter specifies the absolute sample size per class. This pa-
rameter is only available when the sample parameter is set to ‘absolute’ and the balance
data parameter is set to true.

balance data (boolean) Indicates whether the specified class names should be considered
case sensitive or not. This parameter is only available when the balance data parameter is
set to true.

sample size (integer) Thisparameter specifies the exact number of examples to be included in
the sample. This parameter is only available when the sample parameter is set to ‘absolute’
and the balance data parameter is not set to true.

sample probability (real) This parameter specifies the sample probability for each example.
This parameter is only available when the sample parameter is set to ‘probability’ and the
balance data parameter is not set to true.

driver memory (MB) (integer) Amount of memory to be used by the driver process (in MB).
This parameter is only considered if Spark Resource Allocation Policy is set to Static, Heuris-
tic Configuration in the current Radoop Connection.

executor max memory (integer) Percentage of the memory on the largest node of the clus-
ter that can be used by the operator. This parameter is only considered if Spark Resource
Allocation Policy is set to Static, Heuristic Configuration in the current Radoop Connection.

use memory monitor (hoolean) Enables the continuous monitoring of the pushdown pro-
cess that may terminate the job if it seems that it will run out of memory.

configuration parameters List of configuration parameters that will be set in the pushed
down process, just as if they were set in the Preferences menu.

122

7.5. Process Pushdown

Tutorial Processes

Calculating total transaction values for each store

Single Process Push...

inp G exa ._-.-:-"'_'{ exa) out

inp (inp out) out

Figure 7.4: Tutorial process ‘Calculating total transaction values for each store’.

In this simple tutorial process the data is generated using the Generate Sales Data operator.
In the Radoop Nest there is a Single Process Pushdown operator that receives the input exam-
ple set on the first input port and calculates the total sales for each store using the RapidMiner
core Generate Attributes, Aggregate and Rename operators. The output is connected to the first
(example set) output.

Please note that in order to execute this tutorial process, a properly configured Connection
parameter for the Radoop Nest needs to be selected.

Build a Neural Network on the cluster node and apply it with Hive

Train a Neural Network on Spark
using RapidMiner's Neural Network
inp operator. out

Single Process Push...

Generate a random dataset in Spark
with 4 columns, one of which is the
label.

Generate Data

Apply the model with
‘]:f @D RapidMiner's in Hadoop
model applier, which runs

on Hive.

Convert label to bino... Split Data

exa & exa i par

Figure 7.5: Tutorial process ‘Build a Neural Network on the cluster node and apply it with Hive’.

123

7. Utility

This tutorial process uses the Single Process Pushdown operator to train a Neural Net model on
the cluster node using the core Neural Net operator. The input data is generated using Radoop’s
Generate Data operator. The target function is “binomclasswithnoise” that generates -1.0 and
1.0 (real) label values. It is converted to binominal using the Type Conversion operator, then
Split Data is used to create the training and testing Example sets. The first input of the Single
Process Pushdown is used for pushing the example set to the cluster. The subprocess contains
the core Neural Net operator and connects the model to the second output port, which is ap-
plied in-Hadoop on the testing example set using Radoop’s Apply Model operator. At the end,
RapidMiner’s Performance (Binominal Classification) operator is used to evaluate the model’s
performance.

Please note that in order to execute this tutorial process, a properly configured Connection
parameter for the Radoop Nest needs to be selected.

Basket Association Rules

Single Process Push...

inp doe Ay e out
inp (inp v out|) out
out])
t

Compute basket
association rules on a
Single Spark Process

Figure 7.6: Tutorial process ‘Basket Association Rules’.

This tutorial process uses the Single Process Pushdown operator to find a frequent pattern as-
sociation rule in a basket data. For the sake of simplicity, a randomized basket data is generated
in memory. The dataset consists of records of grocery purchases. Healthy groceries are likely
to be bought together. The basket data is pushed down to Hadoop through a Radoop Nest. On
Hadoop a Single Process Pushdown operator is executed, in which an FP-Growth modeling is
conducted. Finally, the results are taken back to RapidMiner Studio.

Please note that in order to execute this tutorial process, a properly configured Connection
parameter for the Radoop Nest needs to be selected.

124

7.6. Random Data Generation

7.6 Random Data Generation

Generate Data

Generate Data

M oxa D This operator generates a numerical example set with a numerical
e label constructed from the attribute values.

Description

Generate data creates a numerical example set where the values are generated with uniform
distribution. The example set consists of the given amount of examples and attributes. The
label value is calculated from the attribute values by a predefined function. The distribution is
then transformated: the values are multiplied by the given range and an offset value is added
to them.

The label target functions are calculated as follows (assuming n generated attributes):

total: attl + att2 +... +att[n]

average: (attl +att2 +... +att[n])/n

polynomial: att1~3 + att2~2 + att3

nonlinear: attl * att2 * att3 + attl * att2 + att2 * att2

complicated: attl * attl * att2 + att2 * att3 - e ~att3

complicated2: attl * attl * att]l + att2 * att2 + attl * att2 + att1 /abs(att3) - 1/ (att3 * att3)
sinus: sin(attl)

sinus2: sin(attl * att2) + sin(attl + att2)

superposition: 5 * sin(attl) + sin(30 * attl)

sinusfreq: 10 * sin(3 * attl) + 12 * sin(7 * attl) + 11 * sin(5 * att2) + 9 * sin(10 * att2) +
10 * sin(8 * attl + att2)

sinuswithtrend: sin(attl) + 0.1 * attl
binomclass: signum((attl - offset) / range - 0.5)

binomclasswithnoise: signum((al +a2 +... +a[n]+noise)/(n+1)-0.5),wherea[i]=
(att[i] - offset) / range and noise is a randomly generated number between 0 and 1.

Output Ports

example set output (exa)

125

7. Utility

Parameters

target function Specifies the target function of this example set.
number examples The number of generated examples.
number of attributes The number of attributes.

attributes lower bound The minimum value for the attributes.

attributes upper bound The maximum value for the attributes.

126

@ @ @

	Radoop Nest
	Data Access
	Hive
	Append into Hive
	Retrieve from Hive
	Store in Hive

	Read
	Read CSV
	Read Database

	Write
	Write CSV
	Write Database

	Blending
	Attributes
	Reorder Attributes
	Names and Roles
	Rename
	Rename by Generic Names
	Rename by Replacing
	Set Role

	Types
	Nominal to Numerical
	Type Conversion

	Selection
	Select Attributes
	Select Random Attributes

	Generation
	Generate Attributes
	Generate Copy
	Generate ID
	Generate Rank

	Examples
	Filter
	Filter Example Range
	Filter Examples

	Sampling
	Sample
	Split Data

	Sort
	Sort

	Table
	Grouping
	Aggregate

	Rotation
	Pivot

	Joins
	Join
	Union

	Values
	Add Noise
	Remap Binominals
	Replace

	Cleansing
	Normalization
	Normalize

	Missing
	Declare Missing Value
	Replace Missing Values

	Duplicates
	Remove Duplicates

	Dimensionality Reduction
	Principal Component Analysis

	Modeling
	Predictive
	Combine Models
	Decision Tree
	Decision Tree (MLlib binominal)
	Linear Regression
	Logistic Regression
	Naive Bayes
	Random Forest
	Support Vector Machine
	Update Model

	Segmentation
	Canopy
	Fuzzy K-Means
	K-Means

	Correlations
	Correlation Matrix
	Covariance Matrix

	Scoring
	Apply Model

	Validation
	Performance (Binominal Classification)
	Performance (Classification)
	Performance (Regression)
	Split Validation

	Utility
	Materialize Data
	Multiply
	Subprocess (Radoop)

	Hive
	Copy Hive Table
	Drop Hive Table
	Rename Hive Table

	Scripting
	Hive Script
	Pig Script
	Spark Script

	Process Control
	Loop (Radoop)
	Loop Attributes (Radoop)

	Local In-Memory Computation
	In-Memory Subprocess (Full)
	In-Memory Subprocess (Sample)

	Process Pushdown
	Single Process Pushdown

	Random Data Generation
	Generate Data

